Computational fluid dynamics and NOSE scale to assess nasal respiratory function, and correlation with linear maxillary measurements after surgically assisted rapid maxillary expansion

Carregando...
Imagem de Miniatura
Citações na Scopus
3
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
CHURCHILL LIVINGSTONE
Citação
INTERNATIONAL JOURNAL OF ORAL AND MAXILLOFACIAL SURGERY, v.52, n.8, p.875-884, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Nasal obstruction is common in patients with a transverse maxillary deficiency. The aim of this study was to determine the variation in nasal airway resistance in adult patients with a transverse maxillary deficiency before and after surgically assisted rapid maxillary expansion (SARME) by computational fluid dynamics (CFD) using computed tomography scans, and to correlate this variation with maxillary linear measurements obtained by means of plaster models. The subjective symptoms of nasal obstruction were also analysed using a visual analogue scale (VAS) for nasal breathing and the Nasal Obstruction Symptom Evaluation (NOSE) scale. There was a median reduction of 21% in nasal airway resistance post SARME (P = 0.002). The NOSE scale score decreased (P < 0.001) and nasal breathing quality VAS scores increased in both nostrils (P < 0.001). Transverse measurements between the upper canines (C-C), premolars (PM-PM), and molars (M-M), and maxillary perimeter showed significant increases (P < 0.001), while the anteroposterior maxillary arch length showed a significant decrease (P = 0.016). An inverse proportional correlation was found between PM-PM and nasal airway resistance (r = -0.395; P = 0.034) and between M-M and nasal airway resistance (r = -0.383; P = 0.040). These results demonstrate that surgically expanding the posterior region of the maxilla results in decreased nasal airway resistance, decreased obstructive symptoms, and improved patient respiratory quality.
Palavras-chave
Maxilla, Nose, Palatal expansion technique, Oral surgery, Respiratory function tests, Nasal obstruction
Referências
  1. BELL WH, 1979, J ORAL SURG, V37, P897
  2. BELL WH, 1976, AM J ORTHOD DENTOFAC, V70, P517, DOI 10.1016/0002-9416(76)90276-1
  3. Bezerra TFP, 2011, RHINOLOGY, V49, P227, DOI 10.4193/Rhino10.019
  4. Casey KP, 2017, OTOLARYNG HEAD NECK, V156, P741, DOI 10.1177/0194599816687751
  5. Chamberland S, 2011, AM J ORTHOD DENTOFAC, V139, P815, DOI 10.1016/j.ajodo.2010.04.032
  6. Cherobin GB, 2021, AM J RHINOL ALLERGY, V35, P245, DOI 10.1177/1945892420950157
  7. Cherobin GB, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0207178
  8. Clement PAR, 2005, RHINOLOGY, V43, P169
  9. Cole P, 2000, RHINOLOGY, P29
  10. DiFrancesco Renata C., 2006, Rev. Dent. Press Ortodon. Ortop. Facial, V11, P107, DOI 10.1590/S1415-54192006000100014
  11. Doruk C, 2004, EUR J ORTHODONT, V26, P397, DOI 10.1093/ejo/26.4.397
  12. Ghoneima A, 2015, PROG ORTHOD, V16, DOI 10.1186/s40510-015-0085-x
  13. Goldenberg DC, 2008, ORAL SURG ORAL MED O, V106, P812, DOI 10.1016/j.tripleo.2008.02.034
  14. Gürler G, 2018, EUR ORAL RES, V52, P94, DOI 10.26650/eor.2018.465
  15. Hino CT, 2008, J CRANIOFAC SURG, V19, P718, DOI 10.1097/SCS.0b013e31816aaa91
  16. Hur JS, 2017, KOREAN J ORTHOD, V47, P353, DOI 10.4041/kjod.2017.47.6.353
  17. Iwasaki T, 2019, ORTHOD CRANIOFAC RES, V22, P201, DOI 10.1111/ocr.12311
  18. Iwasaki T, 2017, AM J ORTHOD DENTOFAC, V151, P929, DOI 10.1016/j.ajodo.2016.10.027
  19. Iwasaki T, 2014, INT J PEDIATR OTORHI, V78, P1258, DOI 10.1016/j.ijporl.2014.05.004
  20. Iwasaki T, 2012, AM J ORTHOD DENTOFAC, V141, P269, DOI 10.1016/j.ajodo.2011.08.025
  21. Jensen T, 2017, OR SURG OR MED OR PA, V123, pE85, DOI 10.1016/j.oooo.2016.10.003
  22. Kahveci OK, 2012, AURIS NASUS LARYNX, V39, P275, DOI 10.1016/j.anl.2011.08.006
  23. Kayalar E, 2016, J CRANIO MAXILL SURG, V44, P285, DOI 10.1016/j.jcms.2015.12.001
  24. Kita S, 2016, J ORAL MAXIL SURG, V74, P2241, DOI 10.1016/j.joms.2016.06.171
  25. Koudstaal MJ, 2009, INT J ORAL MAX SURG, V38, P308, DOI 10.1016/j.ijom.2009.02.012
  26. Kunz F, 2016, J OROFAC ORTHOP, V77, P357, DOI 10.1007/s00056-016-0043-3
  27. Matteini C, 2001, AM J ORTHOD DENTOFAC, V120, P498, DOI 10.1067/mod.2001.118401
  28. Menegat F, 2015, INT J ORAL MAX SURG, V44, P1346, DOI 10.1016/j.ijom.2015.06.018
  29. Mitsuda ST, 2010, ORAL SURG ORAL MED O, V109, P191, DOI 10.1016/j.tripleo.2009.09.011
  30. Nigro JFA, 2003, ARQ OTORRINOLARINGOL, V7, P310
  31. Ramires Tatiana, 2008, Braz J Otorhinolaryngol, V74, P763, DOI 10.1016/S1808-8694(15)31388-4
  32. Salgueiro DG, 2015, J APPL ORAL SCI, V23, P397, DOI 10.1590/1678-775720140486
  33. Seeberger R, 2015, OR SURG OR MED OR PA, V120, P693, DOI 10.1016/j.oooo.2015.07.009
  34. Sittitavornwong S, 2013, J ORAL MAXIL SURG, V71, P1397, DOI 10.1016/j.joms.2013.02.022
  35. Stewart MG, 2004, OTOLARYNG HEAD NECK, V130, P157, DOI 10.1016/j.otohns.2003.09.016
  36. Williams BJD, 2012, J ORAL MAXIL SURG, V70, P2394, DOI 10.1016/j.joms.2011.09.050
  37. Yu CC, 2009, J CRANIOFAC SURG, V20, P426, DOI 10.1097/SCS.0b013e31819b9671
  38. Zambon CE, 2012, INT J ORAL MAX SURG, V41, P1120, DOI 10.1016/j.ijom.2011.12.037
  39. Zandi M, 2014, J CRANIO MAXILL SURG, V42, P1190, DOI 10.1016/j.jcms.2014.02.007
  40. Zhao K, 2014, ANAT REC, V297, P2187, DOI 10.1002/ar.23033