Incomplete sanitation in the Metropolitan Region of Sao Paulo results in detection of SARS-CoV-2 in headwater streams

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
TANIWAKI, Ricardo H.
BUENO, Rodrigo F.
BISPO, Giulia B. S.
AUGUSTO, Matheus R.
SOUZA, Guilherme S.
CHYOSHI, Bruna
BENASSI, Roseli F.
CAMILO, Livia M. B.
DURAN, Adriana F. A.
Citação
SCIENCE OF THE TOTAL ENVIRONMENT, v.908, article ID 168006, 10p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Among the largest metropolitan regions in the world, the Metropolitan Region of Sa similar to o Paulo (MRSP) represents an important case study for the COVID-19 respiratory disease pandemic because it is home to >20 million people, making it one of the largest metropolitan regions in the global south. Besides the high population density, the MRSP has several problems related to social and economic aspects, which may reflect in the dynamics of SARS-CoV-2 virus, such as low income, lack of sanitation and social vulnerability in the peripheral regions of MRSP. In these regions, the input of untreated sewage on the streams and rivers can be frequently observed, which may represent an indicator of poor sewer system. Therefore, this study aimed to identify if streams draining urbanized regions without appropriate sanitation are prone to receive higher loads of detectable SARS-CoV-2 in its waters. For this, we collected water samples from 45 headwater streams distributed across an urbanization gradient (0-100 % of urbanization) in the MRSP, with three replicates in each stream and analyzed the concentrations of SARS-CoV-2 RNA targeting the nucleocapsid N1 and N2 genomic regions. In addition, we analyzed the relationship between the concentrations of SARS-CoV-2 RNA and sanitation and social variables. Our results showed that the concentrations of SARS-CoV-2 RNA were higher in the streams draining medium to high urbanizedcatchments, especially because of the lack of sanitation and the higher probabilities to detect SARS-CoV-2 RNA in the stream water was associated with households without a septic tank or sewage system within the catchment, followed by per capita household income. These results reflect the lack of urbanization planning and the lack of sanitation, especially in the poor regions from the MRSP, adding another risk for the already vulnerable population in a metropolitan region from the global south during a pandemic disease.
Palavras-chave
Coronavirus, Tropical streams, Urbanization, Sewage, Vulnerable population
Referências
  1. Amaku M, 2021, INFECT DIS MODEL, V6, P46, DOI 10.1016/j.idm.2020.11.004
  2. Aquino EML, 2020, CIENC SAUDE COLETIVA, V25, P2423
  3. Arantes BL, 2021, CITIES, V111, DOI 10.1016/j.cities.2020.103099
  4. Augusto MR, 2022, J ENVIRON CHEM ENG, V10, DOI 10.1016/j.jece.2022.107478
  5. Boxus M, 2005, J VIROL METHODS, V125, P125, DOI 10.1016/j.jviromet.2005.01.008
  6. Bueno RD, 2022, J ENVIRON CHEM ENG, V10, DOI 10.1016/j.jece.2022.108298
  7. Bustin SA, 2009, CLIN CHEM, V55, P611, DOI 10.1373/clinchem.2008.112797
  8. CDC, 2021, Wastewater Surveillance Data Reporting and Analytics
  9. de Souza FG, 2018, REV INST MED TROP SP, V60, DOI [10.1590/S1678-9946201860069, 10.1590/s1678-9946201860069]
  10. EMPLASA, 2022, Forum Nacional de Entidades Metropolitanas
  11. EMPLASA
  12. SECRETARIA DA CASA CIVIL, 2015, Quadro Socioeconomico: Subsidios a Elaboracao do PDUI
  13. Falcao DP, 1998, CURR MICROBIOL, V37, P28, DOI 10.1007/s002849900332
  14. Garmany J, 2020, ANTIPODE, V52, P124, DOI 10.1111/anti.12584
  15. Goto EA, 2022, APPL GEOGR, V140, DOI 10.1016/j.apgeog.2022.102653
  16. Guerrero-Latorre L., 2021, Sci. Total Environ, V737, P2423, DOI [10.3390/ijerph17249251, DOI 10.3390/IJERPH17249251]
  17. IBGE, 2013, IBGE Downloads
  18. Ishwaran H., 2021, Package ""randomForestSRC"" Title Fast Unified Random Forests for Survival, Regression, and Classification (RF-SRC).
  19. Jacobi PR, 2015, AM LAT HOY, V69, P35, DOI 10.14201/alh2015693551
  20. KRUSKAL WH, 1952, J AM STAT ASSOC, V47, P583, DOI 10.1080/01621459.1952.10483441
  21. Kuhn M, 2008, J STAT SOFTW, V28, P1, DOI 10.18637/jss.v028.i05
  22. Mahlknecht J, 2021, SCI TOTAL ENVIRON, V784, DOI 10.1016/j.scitotenv.2021.147183
  23. Maia AG, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0245011
  24. Claro ICM, 2021, WATER RES, V203, DOI 10.1016/j.watres.2021.117534
  25. Martins M, 2015, REV SOC BRAS MED TRO, V48, P42, DOI 10.1590/0037-8682-0162-2014
  26. Medema G, 2020, ENVIRON SCI TECH LET, V7, P511, DOI 10.1021/acs.estlett.0c00357
  27. Razzolini MTP, 2021, ENVIRON POLLUT, V290, DOI 10.1016/j.envpol.2021.118003
  28. PNUD, 2014, Atlas do Desenvolvimento Humano nas Regioes Metropolitanas Brasileiras
  29. R Core Team, 2020, R: a language and environment for statistical computing
  30. Rajal VB, 2007, WATER RES, V41, P1411, DOI 10.1016/j.watres.2006.12.034
  31. Ramos Ruth Ferreira, 2020, Ambient. soc., V23, pe01041, DOI 10.1590/1809-4422asoc20200104r1vu2020l6ao
  32. Randazzo W, 2020, WATER RES, V181, DOI 10.1016/j.watres.2020.115942
  33. Ribeiro KB, 2021, INT J EPIDEMIOL, V50, P732, DOI 10.1093/ije/dyab022
  34. SEADE, 2023, Boletim Coronavirus
  35. Souza CM, 2020, REMOTE SENS-BASEL, V12, DOI 10.3390/rs12172735
  36. Travassos L, 2022, FRONT SUSTAIN CITIES, V3, DOI 10.3389/frsc.2021.684109
  37. Valero NNH, 2021, SCI TOTAL ENVIRON, V797, DOI 10.1016/j.scitotenv.2021.148960
  38. Wickham H., 2019, Journal of Open Source Software, V4, P1686, DOI [10.21105/joss.01686, DOI 10.21105/JOSS.0168, DOI 10.21105/JOSS.01686]
  39. Wu FQ, 2020, MSYSTEMS, V5, DOI 10.1128/mSystems.00614-20