Clinical Prognostic Implications of Wnt Hub Genes Expression in Medulloblastoma

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER/PLENUM PUBLISHERS
Autores
MARTINS-DA-SILVA, Andrea
BARONI, Mirella
SALOMAO, Karina Bezerra
CHAGAS, Pablo Ferreira das
BONFIM-SILVA, Ricardo
GERON, Lenisa
CRUZEIRO, Gustavo Alencastro Veiga
JR, Wilson Araujo da Silva
CORREA, Carolina Alves Pereira
JR, Carlos Gilberto Carlotti
Citação
CELLULAR AND MOLECULAR NEUROBIOLOGY, v.43, n.2, p.813-826, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Medulloblastoma is the most common type of pediatric malignant primary brain tumor, and about one-third of patients die due to disease recurrence and most survivors suffer from long-term side effects. MB is clinically, genetically, and epigenetically heterogeneous and subdivided into at least four molecular subgroups: WNT, SHH, Group 3, and Group 4. We evaluated common differentially expressed genes between a Brazilian RNA-seq GSE181293 dataset and microarray GSE85217 dataset cohort of pediatric MB samples using bioinformatics methodology in order to identify hub genes of the molecular subgroups based on PPI network construction, survival and functional analysis. The main finding was the identification of five hub genes from the WNT subgroup that are tumor suppressors, and whose lower expression is related to a worse prognosis for MB patients. Furthermore, the common genes correlated with the five tumor suppressors participate in important pathways and processes for tumor initiation and progression, as well as development and differentiation, and some of them control cell stemness and pluripotency. These genes have not yet been studied within the context of MB, representing new important elements for investigation in the search for therapeutic targets, prognostic markers or for understanding of MB biology.
Palavras-chave
Hub genes, Bioinformatics tools, Biomarkers, Therapeutic targets, Molecular Subgroups
Referências
  1. Aavani T, 2017, GENE EXPR PATTERNS, V23-24, P32, DOI 10.1016/j.gep.2017.03.001
  2. Ahn JI, 2019, BMC CANCER, V19, DOI 10.1186/s12885-019-5998-1
  3. Bernkopf DB, 2015, J CELL SCI, V128, P33, DOI 10.1242/jcs.159145
  4. Blazquez R, 2020, INT J CANCER, V146, P3170, DOI 10.1002/ijc.32742
  5. Bonfim-Silva R, 2017, INT J ONCOL, V51, P1929, DOI 10.3892/ijo.2017.4151
  6. Brzozowska M, 2021, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.602070
  7. Casciati A, 2020, CANCERS, V12, DOI 10.3390/cancers12010226
  8. Cavalli FMG, 2017, CANCER CELL, V31, P737, DOI 10.1016/j.ccell.2017.05.005
  9. Chang ZW, 2016, J CANCER RES THER, V12, P597, DOI 10.4103/0973-1482.146089
  10. Chen JW, 2021, SCI REP-UK, V11, DOI 10.1038/s41598-021-92725-8
  11. Chin CH, 2014, BMC SYST BIOL, V8, DOI 10.1186/1752-0509-8-S4-S11
  12. Cipriano A, 2021, ELIFE, V10, DOI 10.7554/eLife.54782
  13. Dhooge PPA, 2021, PLOS ONE, V16, DOI 10.1371/journal.pone.0253716
  14. Dong SW, 2018, METHODS MOL BIOL, V1794, P97, DOI 10.1007/978-1-4939-7871-7_7
  15. Dräger J, 2017, ONCOTARGET, V8, P3259, DOI 10.18632/oncotarget.13887
  16. Fagerberg L, 2014, MOL CELL PROTEOMICS, V13, P397, DOI 10.1074/mcp.M113.035600
  17. Falcone C, 2015, NEURAL REGEN RES, V10, P550, DOI 10.4103/1673-5374.155418
  18. Fang S, 2019, ONCOGENE, V38, P4061, DOI 10.1038/s41388-019-0704-y
  19. Felemban M, 2018, ACTA BIOMATER, V74, P207, DOI 10.1016/j.actbio.2018.05.023
  20. Ferluga S, 2016, ONCOTARGET, V7, P59860, DOI 10.18632/oncotarget.10978
  21. Figeac N, 2015, CELL SIGNAL, V27, P1652, DOI 10.1016/j.cellsig.2015.03.025
  22. Geron L, 2018, CYTOTECHNOLOGY, V70, P1713, DOI 10.1007/s10616-018-0260-2
  23. Gu ZG, 2016, BIOINFORMATICS, V32, P2847, DOI 10.1093/bioinformatics/btw313
  24. Guerit S, 2016, CANCER CELL, V29, P427, DOI 10.1016/j.ccell.2016.03.024
  25. Guo DM, 2020, PEERJ, V8, DOI 10.7717/peerj.8843
  26. Haeberle H, 2012, NEOPLASIA, V14, P666, DOI 10.1593/neo.12634
  27. Han SS, 2018, DEVELOPMENT, V145, DOI 10.1242/dev.157719
  28. Hannan FM, 2018, NAT REV ENDOCRINOL, V15, P33, DOI 10.1038/s41574-018-0115-0
  29. Hovestadt V, 2019, NATURE, V572, P74, DOI 10.1038/s41586-019-1434-6
  30. Jakovljevic A, 2021, CELLS-BASEL, V10, DOI 10.3390/cells10061345
  31. Kudo C, 2005, J COMP NEUROL, V487, P255, DOI 10.1002/cne.20551
  32. Kumari S, 2021, FRONT MOL BIOSCI, V8, DOI 10.3389/fmolb.2021.677979
  33. Lenis TL, 2018, P NATL ACAD SCI USA, V115, pE11120, DOI 10.1073/pnas.1802519115
  34. Li RG, 2020, ONCOL LETT, V19, P2846, DOI 10.3892/ol.2020.11389
  35. Liu XQ, 2007, P NATL ACAD SCI USA, V104, P4413, DOI 10.1073/pnas.0610950104
  36. Liu ZJ, 2018, BIOMED RES INT-UK, V2018, DOI 10.1155/2018/3574534
  37. LOVE MI, 2014, GENOME BIOL, V15, DOI 10.1186/S13059-014-0550-8
  38. Mantione KJ, 2014, MED SCI MONIT BASIC, V20, P138, DOI 10.12659/MSMBR.892101
  39. Marmor MF, 2018, DOC OPHTHALMOL, V137, P57, DOI 10.1007/s10633-018-9651-0
  40. Midwood KS, 2011, CELL MOL LIFE SCI, V68, P3175, DOI 10.1007/s00018-011-0783-6
  41. Mo SJ, 2018, CANCER COMMUN, V38, DOI 10.1186/s40880-018-0276-1
  42. Nie C, 2021, BMC CANCER, V21, DOI 10.1186/s12885-021-08199-4
  43. Northcott PA, 2019, NAT REV DIS PRIMERS, V5, DOI 10.1038/s41572-019-0063-6
  44. Northcott PA, 2017, NATURE, V547, P311, DOI 10.1038/nature22973
  45. Oproescu AM, 2021, FRONT MOL NEUROSCI, V14, DOI 10.3389/fnmol.2021.642016
  46. Pasadi Sanjeev, 2020, Oncotarget, V11, P4028, DOI 10.18632/oncotarget.27777
  47. Phoenix TN, 2016, CANCER CELL, V29, P508, DOI 10.1016/j.ccell.2016.03.002
  48. Poggi L, 2018, FRONT CELL DEV BIOL, V6, DOI 10.3389/fcell.2018.00167
  49. Pruitt KD, 2001, NUCLEIC ACIDS RES, V29, P137, DOI 10.1093/nar/29.1.137
  50. Revuelta M, 2020, NEUROCHEM RES, V45, P643, DOI 10.1007/s11064-020-02961-z
  51. Ritchie ME, 2015, NUCLEIC ACIDS RES, V43, DOI 10.1093/nar/gkv007
  52. Robinson G, 2012, NATURE, V488, P43, DOI 10.1038/nature11213
  53. Son S, 2020, BIOCHEM BIOPH RES CO, V521, P939, DOI 10.1016/j.bbrc.2019.11.013
  54. Stevenson L, 2012, CLIN CANCER RES, V18, P5412, DOI 10.1158/1078-0432.CCR-12-1780
  55. Tang DY, 2019, J CELL BIOCHEM, V120, P9522, DOI 10.1002/jcb.28228
  56. Tang XQ, 2012, CHILD NERV SYST, V28, P1869, DOI 10.1007/s00381-012-1856-z
  57. Vaillant C, 2009, CEREBELLUM, V8, P291, DOI 10.1007/s12311-009-0094-8
  58. Cruzeiro GAV, 2019, ACTA NEUROPATHOL COM, V7, DOI 10.1186/s40478-019-0681-y
  59. Wagstaff EL, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22137081
  60. Warde-Farley D, 2010, NUCLEIC ACIDS RES, V38, pW214, DOI 10.1093/nar/gkq537
  61. Whittier KL, 2013, ACTA NEUROPATHOL COM, V1, DOI 10.1186/2051-5960-1-66
  62. Xu J, 2021, BMC CARDIOVASC DISOR, V21, DOI 10.1186/s12872-021-02147-7
  63. Xu LF, 2020, AM J MED SCI, V359, P226, DOI 10.1016/j.amjms.2020.01.009
  64. Zhang CA, 2021, CANCERS, V13, DOI 10.3390/cancers13123089
  65. Zhang L, 2019, J INT MED RES, V47, P1241, DOI 10.1177/0300060518819382
  66. Zhang L, 2019, BMC BIOINFORMATICS, V20, DOI 10.1186/s12859-019-3140-7