Vibration perception among children and adolescents with Charcot-Marie-tooth disease and implications for foot posture

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER SCI LTD
Autores
CARDOSO, Juliana
BAPTISTA, Cyntia Rogean de Jesus Alves de
BUZZETTI, Beatriz Parra
JR, Wilson Marques
MATTIELLO-SVERZUT, A. C.
Citação
CLINICAL BIOMECHANICS, v.110, article ID 106114, 7p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Alterations in vibration perception among children and adolescents with Charcot-Marie-Tooth disease might explain observed changes in foot posture. Therefore, this cross-sectional study compared the vibration perception of the lower limbs in youths with and without Charcot-Marie-Tooth disease and verified the cut-off value of the distal vibration perception for the Charcot-Marie-Tooth group. In addition, associations between dynamic plantar pressure, vibration perception and isometric muscle strength were investigated. Methods: Participants aged 9-18 (Charcot-Marie-Tooth group n = 32; Typical group n = 32) had vibration perception measured by a 128-Hz graduated tuning fork. The static and dynamic foot posture were evaluated by the Foot Posture Index and pressure distribution measuring system, respectively. For the Charcot-Marie-Tooth group, a hand-held dynamometer evaluated the isometric muscle strength of the lower limbs. Findings: Children with Charcot-Marie-Tooth disease presented impaired vibration perception at the distal phalanx of the hallux and head of the first metatarsal compared to their typically developing peers, while adolescents with Charcot-Marie-Tooth disease showed impairment in all the tested regions compared to their typically developing peers. The cut-off value for vibration perception for participants with Charcot-Marie-Tooth disease was 5.7, considering the original grade of the tuning-fork 128 Hz. Among the associations established for the Charcot-Marie-Tooth group, a greater vibration perception at the distal phalanx of the hallux was associated with a longer rearfoot contact time (beta = 31.02, p = 0.04). Interpretation: These new findings may guide the clinical evaluation and rehabilitation treatment for children and adolescents with Charcot-Marie-Tooth disease.
Palavras-chave
Foot deformities, Hereditary sensory and motor neuropathy, Pediatrics, Myelinated nerve fibers, Rehabilitation
Referências
  1. Arvin M, 2018, FRONT PHYSIOL, V9, DOI 10.3389/fphys.2018.01134
  2. Berciano J, 2011, J NEUROL, V258, P1594, DOI 10.1007/s00415-011-6094-x
  3. Burns J, 2005, FOOT ANKLE INT, V26, P540, DOI 10.1177/107110070502600708
  4. Burns J, 2010, NEUROLOGY, V75, P726, DOI 10.1212/WNL.0b013e3181eee496
  5. Burns J, 2012, ANN NEUROL, V71, P642, DOI 10.1002/ana.23572
  6. Burns Joshua, 2006, Brain, V129, pE51, DOI 10.1093/brain/awl116
  7. Burns J, 2009, MUSCLE NERVE, V39, P158, DOI 10.1002/mus.21140
  8. Butler AA, 2008, BRAIN RES, V1242, P244, DOI 10.1016/j.brainres.2008.03.094
  9. Cardoso J, 2021, GAIT POSTURE, V86, P112, DOI 10.1016/j.gaitpost.2021.03.009
  10. Cornett KMD, 2017, ANN NEUROL, V82, P353, DOI 10.1002/ana.25009
  11. Cornett KMD, 2016, JAMA NEUROL, V73, P645, DOI 10.1001/jamaneurol.2016.0171
  12. De Baptista CR, 2021, PHYSIOTHER THEOR PR, V37, P73, DOI 10.1080/09593985.2019.1603257
  13. Estilow T, 2019, MUSCLE NERVE, V60, P242, DOI 10.1002/mus.26500
  14. Ferrarin M, 2012, GAIT POSTURE, V35, P131, DOI 10.1016/j.gaitpost.2011.08.023
  15. Grillner S, 2006, NEURON, V52, P751, DOI 10.1016/j.neuron.2006.11.008
  16. Hilz MJ, 1998, J NEUROL SCI, V159, P219, DOI 10.1016/S0022-510X(98)00177-4
  17. Hoo ZH, 2017, EMERG MED J, V34, P357, DOI 10.1136/emermed-2017-206735
  18. Kandel ER., 2012, Principles of Neural Science. Vol, V5th ed, DOI [DOI 10.1036/0838577016, 10.1036/0838577016]
  19. Kennedy RA, 2019, ARCH DIS CHILD, V104, P535, DOI 10.1136/archdischild-2018-314890
  20. Lacquaniti F, 2012, J PHYSIOL-LONDON, V590, P2189, DOI 10.1113/jphysiol.2011.215137
  21. Lencioni T, 2015, NEUROMUSCULAR DISORD, V25, P640, DOI 10.1016/j.nmd.2015.05.003
  22. Liu XC, 2011, J PEDIATR ORTHOPED, V31, P705, DOI 10.1097/BPO.0b013e31822108ee
  23. McKay MJ, 2017, GAIT POSTURE, V58, P78, DOI 10.1016/j.gaitpost.2017.07.004
  24. Nardone A, 2000, EXP BRAIN RES, V135, P155, DOI 10.1007/s002210000513
  25. Nardone A, 2006, GAIT POSTURE, V23, P364, DOI 10.1016/j.gaitpost.2005.04.002
  26. Panosyan FB, 2016, NEUROLOGY, V87, P738, DOI 10.1212/WNL.0000000000002991
  27. Pareyson D, 2009, LANCET NEUROL, V8, P654, DOI 10.1016/S1474-4422(09)70110-3
  28. Pearson KG, 2000, ANNU REV PHYSIOL, V62, P723, DOI 10.1146/annurev.physiol.62.1.723
  29. Ramdharry GM, 2018, PHYSIOTHER RES INT, V23, DOI 10.1002/pri.1702
  30. Redmond AC, 2006, CLIN BIOMECH, V21, P89, DOI 10.1016/j.clinbiomech.2005.08.002
  31. Rose KJ, 2015, J FOOT ANKLE RES, V8, DOI 10.1186/s13047-015-0118-1
  32. Cruz KLT, 2021, BRAZ J PHYS THER, V25, P303, DOI 10.1016/j.bjpt.2020.07.008
  33. Daloia LMT, 2018, BRAZ J PHYS THER, V22, P474, DOI 10.1016/j.bjpt.2018.04.006
  34. THIVOLET C, 1990, DIABETES CARE, V13, P1077, DOI 10.2337/diacare.13.10.1077
  35. van der Linden MH, 2010, GAIT POSTURE, V31, P483, DOI 10.1016/j.gaitpost.2010.02.005
  36. Villalón E, 2017, GENES BRAIN BEHAV, V16, P260, DOI 10.1111/gbb.12341
  37. Viseux FJF, 2020, NEUROPHYSIOL CLIN, V50, P55, DOI 10.1016/j.neucli.2019.12.003
  38. VOLPON JB, 1994, J PEDIATR ORTHOPED, V14, P83, DOI 10.1097/01241398-199401000-00017
  39. ZWEIG MH, 1993, CLIN CHEM, V39, P561