Polymorphisms in transcription factor binding sites and enhancer regions and pancreatic ductal adenocarcinoma risk

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
BMC
Autores
UENAL, Pelin
LU, Ye
BUENO-DE-MESQUITA, Bas
EIJCK, Casper H. J. van
TALAR-WOJNAROWSKA, Renata
SZENTESI, Andrea
GAZOULI, Maria
KREIVENAITE, Edita
TAVANO, Francesca
MALECKA-WOJCIESKO, Ewa
Citação
HUMAN GENOMICS, v.18, n.1, article ID 12, 12p, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Genome-wide association studies (GWAS) are a powerful tool for detecting variants associated with complex traits and can help risk stratification and prevention strategies against pancreatic ductal adenocarcinoma (PDAC). However, the strict significance threshold commonly used makes it likely that many true risk loci are missed. Functional annotation of GWAS polymorphisms is a proven strategy to identify additional risk loci. We aimed to investigate single-nucleotide polymorphisms (SNP) in regulatory regions [transcription factor binding sites (TFBSs) and enhancers] that could change the expression profile of multiple genes they act upon and thereby modify PDAC risk. We analyzed a total of 12,636 PDAC cases and 43,443 controls from PanScan/PanC4 and the East Asian GWAS (discovery populations), and the PANDoRA consortium (replication population). We identified four associations that reached study-wide statistical significance in the overall meta-analysis: rs2472632(A) (enhancer variant, OR 1.10, 95%CI 1.06,1.13, p = 5.5 x 10-8), rs17358295(G) (enhancer variant, OR 1.16, 95%CI 1.10,1.22, p = 6.1 x 10-7), rs2232079(T) (TFBS variant, OR 0.88, 95%CI 0.83,0.93, p = 6.4 x 10-6) and rs10025845(A) (TFBS variant, OR 1.88, 95%CI 1.50,1.12, p = 1.32 x 10-5). The SNP with the most significant association, rs2472632, is located in an enhancer predicted to target the coiled-coil domain containing 34 oncogene. Our results provide new insights into genetic risk factors for PDAC by a focused analysis of polymorphisms in regulatory regions and demonstrating the usefulness of functional prioritization to identify loci associated with PDAC risk.
Palavras-chave
Association study, Enhancer, Pancreatic cancer, Single nucleotide polymorphism, Transcription factor binding site
Referências
  1. Afghani E, 2022, HEMATOL ONCOL CLIN N, V36, P879, DOI 10.1016/j.hoc.2022.07.002
  2. Buniello A, 2019, NUCLEIC ACIDS RES, V47, pD1005, DOI 10.1093/nar/gky1120
  3. Campa D, 2013, DIGEST LIVER DIS, V45, P95, DOI 10.1016/j.dld.2012.09.014
  4. Childs EJ, 2015, NAT GENET, V47, P911, DOI 10.1038/ng.3341
  5. Corradi C, 2021, INT J CANCER, V148, P2779, DOI 10.1002/ijc.33475
  6. Fan GB, 2017, ONCOTARGET, V8, P106026, DOI 10.18632/oncotarget.22523
  7. Farh KKH, 2015, NATURE, V518, P337, DOI 10.1038/nature13835
  8. French JD, 2020, TRENDS GENET, V36, P880, DOI 10.1016/j.tig.2020.07.004
  9. Geng W, 2018, MOL MED REP, V17, P465, DOI 10.3892/mmr.2017.7860
  10. Gentiluomo M, 2022, SEMIN CANCER BIOL, V79, P105, DOI 10.1016/j.semcancer.2020.08.003
  11. Gentiluomo M, 2019, MUTAGENESIS, V34, P391, DOI 10.1093/mutage/gez032
  12. Gentiluomo M, 2019, CARCINOGENESIS, V40, P544, DOI 10.1093/carcin/bgz006
  13. Glinka A, 2011, EMBO REP, V12, P1055, DOI 10.1038/embor.2011.175
  14. Cunha DMG, 2014, EXP GERONTOL, V60, P215, DOI 10.1016/j.exger.2014.11.008
  15. Gong YQ, 2015, ONCOTARGET, V6, P25856, DOI 10.18632/oncotarget.4624
  16. Johnston AD, 2019, NAT COMMUN, V10, DOI 10.1038/s41467-019-11412-5
  17. Jung SW, 2017, J PHYS CHEM B, V121, P741, DOI 10.1021/acs.jpcb.6b11806
  18. Kang YE, 2017, ONCOTARGET, V8, P114980, DOI 10.18632/oncotarget.22692
  19. Kent WJ, 2002, GENOME RES, V12, P996, DOI 10.1101/gr.229102
  20. Klein AP, 2021, NAT REV GASTRO HEPAT, V18, P493, DOI 10.1038/s41575-021-00457-x
  21. Klein AP, 2012, MOL CARCINOGEN, V51, P14, DOI 10.1002/mc.20855
  22. Kumar S, 2017, NUCLEIC ACIDS RES, V45, pD139, DOI 10.1093/nar/gkw1064
  23. Lin YS, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16711-w
  24. Liu J, 2019, J EXP MED, V216, P656, DOI 10.1084/jem.20180749
  25. Liu LB, 2018, MED SCI MONITOR, V24, P8383, DOI 10.12659/MSM.913346
  26. Löw M, 2004, DEUT MED WOCHENSCHR, V129, P2643, DOI 10.1055/s-2004-836089
  27. Lu Y, 2021, FRONT GENET, V12, DOI 10.3389/fgene.2021.693933
  28. Mahawithitwong P, 2013, INT J ONCOL, V42, P1360, DOI 10.3892/ijo.2013.1838
  29. Mazerbourg S, 2004, MOL ENDOCRINOL, V18, P2241, DOI 10.1210/me.2004-0133
  30. Merz S, 2023, THERANOSTICS, V13, P1949, DOI 10.7150/thno.78323
  31. Modi S, 2016, J CELL BIOCHEM, V117, P279, DOI 10.1002/jcb.25284
  32. Nasser J, 2021, NATURE, V593, P238, DOI 10.1038/s41586-021-03446-x
  33. Onda T, 2007, CANCER RES, V67, P9643, DOI 10.1158/0008-5472.CAN-07-1911
  34. Pennacchio LA, 2013, NAT REV GENET, V14, P288, DOI 10.1038/nrg3458
  35. Pistoni L, 2021, CARCINOGENESIS, V42, P1037, DOI 10.1093/carcin/bgab057
  36. Qi W, 2017, MED SCI MONITOR, V23, P6012, DOI 10.12659/MSM.907951
  37. Riboli E, 2002, PUBLIC HEALTH NUTR, V5, P1113, DOI 10.1079/PHN2002394
  38. Selsted ME, 2005, NAT IMMUNOL, V6, P551, DOI 10.1038/ni1206
  39. Shimizu Y, 2022, GEROSCIENCE, V44, P997, DOI 10.1007/s11357-021-00398-y
  40. Shinawi M, 2011, AM J MED GENET A, V155A, P1272, DOI 10.1002/ajmg.a.33878
  41. Siegel RL, 2022, CA-CANCER J CLIN, V72, P7, DOI 10.3322/caac.21708
  42. Tobi M, 2013, DIGEST DIS SCI, V58, P744, DOI 10.1007/s10620-012-2387-x
  43. Ushio J, 2021, DIAGNOSTICS, V11, DOI 10.3390/diagnostics11030562
  44. van Andel H, 2017, P NATL ACAD SCI USA, V114, P376, DOI 10.1073/pnas.1618650114
  45. Walsh N, 2019, JNCI-J NATL CANCER I, V111, P557, DOI 10.1093/jnci/djy155
  46. Wang L, 2020, CANCER SCI, V111, P2310, DOI 10.1111/cas.14444
  47. Wang Z, 2020, GYNECOL ONCOL, V159, P839, DOI 10.1016/j.ygyno.2020.09.020
  48. Wray GA, 2003, MOL BIOL EVOL, V20, P1377, DOI 10.1093/molbev/msg140
  49. Yang EP, 2021, CELL PROLIFERAT, V54, DOI 10.1111/cpr.12958
  50. Zhang JJ, 2014, MOL CANCER, V13, DOI 10.1186/1476-4598-13-130
  51. Zhang Y, 2018, NAT GENET, V50, P1318, DOI 10.1038/s41588-018-0193-x
  52. Zhang YD, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-16483-3
  53. Zhou TX, 2022, GUT, V71, P357, DOI 10.1136/gutjnl-2020-321952