External validation of a machine learning based algorithm to differentiate hepatic mucinous cystic neoplasms from benign hepatic cysts

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
FURTADO, Felipe S. S.
BADENES-ROMERO, Alvaro
HESAMI, Mina
MOSTAFAVI, Leila
NAJMI, Zahra
MOJTAHED, Amirkasra
ANDERSON, Mark A. A.
CATALANO, Onofrio A. A.
Citação
ABDOMINAL RADIOLOGY, v.48, n.7, p.2311-2320, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Purpose To externally validate an algorithm for non-invasive differentiation of hepatic mucinous cystic neoplasms (MCN) from benign hepatic cysts (BHC), which differ in management. Methods Patients with cystic liver lesions pathologically confirmed as MCN or BHC between January 2005 and March 2022 from multiple institutions were retrospectively included. Five readers (2 radiologists, 3 non-radiologist physicians) independently reviewed contrast-enhanced CT or MRI examinations before tissue sampling and applied the 3-feature classification algorithm described by Hardie et al. to differentiate between MCN and BHC, which had a reported accuracy of 93.5%. The classification was then compared to the pathology results. Interreader agreement between readers across different levels of experience was evaluated with Fleiss' Kappa. Results The final cohort included 159 patients, median age of 62 years (IQR [52.0, 70.0]), 66.7% female (106). Of all patients, 89.3% (142) had BHC, and the remaining 10.7% (17) had MCN on pathology. Agreement for class designation between the radiologists was almost perfect (Fleiss' Kappa 0.840, p < 0.001). The algorithm had an accuracy of 98.1% (95% CI [94.6%, 99.6%]), a positive predictive value of 100.0% (95% CI [76.8%, 100.0%]), a negative predictive value of 97.9% (95% CI [94.1%, 99.6%]), and an area under the receiver operator characteristic curve (AUC) of 0.911 (95% CI [0.818, 1.000]). Conclusion The evaluated algorithm showed similarly high diagnostic accuracy in our external, multi-institutional validation cohort. This 3-feature algorithm is easily and rapidly applied and its features are reproducible among radiologists, showing promise as a clinical decision support tool. [GRAPHICS] .
Palavras-chave
Neoplasms, cystic, mucinous, and serous, Magnetic resonance imaging, Cystadenocarcinoma, Cystadenoma, Algorithms, Liver
Referências
  1. Anderson MA, 2023, ABDOM RADIOL, V48, P79, DOI 10.1007/s00261-021-03303-5
  2. Anderson MA, 2021, CLIN IMAG, V76, P46, DOI 10.1016/j.clinimag.2021.01.036
  3. Arnaoutakis DJ, 2015, ANN SURG, V261, P361, DOI 10.1097/SLA.0000000000000543
  4. Austin PC, 2017, STAT METHODS MED RES, V26, P796, DOI 10.1177/0962280214558972
  5. Bakoyiannis A, 2013, WORLD J GASTROENTERO, V19, P7603, DOI 10.3748/wjg.v19.i43.7603
  6. Bleeker SE, 2003, J CLIN EPIDEMIOL, V56, P826, DOI 10.1016/S0895-4356(03)00207-5
  7. Boyum JH, 2021, AM J ROENTGENOL, V216, P403, DOI 10.2214/AJR.20.22768
  8. Boyum JH, 2016, MAYO CLIN PROC, V91, P329, DOI 10.1016/j.mayocp.2015.11.015
  9. Chi H, 2017, EUR J GASTROEN HEPAT, V29, P36, DOI 10.1097/MEG.0000000000000731
  10. Choi HK, 2010, J CLIN GASTROENTEROL, V44, P289, DOI 10.1097/MCG.0b013e3181b5c789
  11. Dong Y, 2017, SCAND J GASTROENTERO, V52, P365, DOI 10.1080/00365521.2016.1259652
  12. Dua MM, 2016, DIGEST DIS SCI, V61, P1835, DOI 10.1007/s10620-015-3943-y
  13. Halimu C, 2019, PROCEEDINGS OF THE 3RD INTERNATIONAL CONFERENCE ON MACHINE LEARNING AND SOFT COMPUTING (ICMLSC 2019), P1, DOI 10.1145/3310986.3311023
  14. Hardie AD, 2022, ACAD RADIOL, V29, P1149, DOI 10.1016/j.acra.2021.08.025
  15. Kim HJ, 2014, AM J ROENTGENOL, V202, P83, DOI 10.2214/AJR.12.9170
  16. Kim JY, 2010, AM J ROENTGENOL, V195, P1142, DOI 10.2214/AJR.09.4026
  17. Kovacs MD, 2018, CLIN IMAG, V49, P44, DOI 10.1016/j.clinimag.2017.10.022
  18. LANDIS JR, 1977, BIOMETRICS, V33, P159, DOI 10.2307/2529310
  19. Lantinga MA, 2013, WORLD J GASTROENTERO, V19, P3543, DOI 10.3748/wjg.v19.i23.3543
  20. Le Don K, 2019, Proc (Bayl Univ Med Cent), V32, P124, DOI 10.1080/08998280.2018.1520623
  21. Marrero JA, 2014, AM J GASTROENTEROL, V109, P1328, DOI 10.1038/ajg.2014.213
  22. Mavilia MG, 2018, J CLIN TRANSL HEPATO, V6, P208, DOI 10.14218/JCTH.2017.00069
  23. McHugh ML, 2012, BIOCHEM MEDICA, V22, P276, DOI 10.11613/bm.2012.031
  24. Myers RP, 2008, LIVER INT, V28, P705, DOI 10.1111/j.1478-3231.2008.01691.x
  25. Park HJ, 2018, AM J ROENTGENOL, V211, P67, DOI 10.2214/AJR.17.19261
  26. R Core Team, 2020, R LANG ENV STAT COMP
  27. Robin X, 2011, BMC BIOINFORMATICS, V12, DOI 10.1186/1471-2105-12-77
  28. Rodriguez RM, 2019, J SURG CASE REP, DOI 10.1093/jscr/rjz364
  29. RStudio Team, 2019, RSTUDIO INT DEV R
  30. Seo JK, 2010, EUR J GASTROEN HEPAT, V22, P989, DOI 10.1097/MEG.0b013e328337c971
  31. Shah S, 2021, POL J RADIOL, V86, pE440, DOI 10.5114/pjr.2021.108257
  32. Soni Sweta, 2021, Med Pharm Rep, V94, P366, DOI 10.15386/mpr-1543
  33. Steyerberg EW, 2001, J CLIN EPIDEMIOL, V54, P774, DOI 10.1016/S0895-4356(01)00341-9
  34. Steyerberg EW, 2016, J CLIN EPIDEMIOL, V69, P245, DOI 10.1016/j.jclinepi.2015.04.005
  35. Vachha B, 2011, AM J ROENTGENOL, V196, pW355, DOI 10.2214/AJR.10.5292
  36. Xu H-X, 2012, Ultraschall Med, V33, pE241, DOI 10.1055/s-0031-1299276
  37. Yan WJ, 2020, RADIOL-ARTIF INTELL, V2, DOI 10.1148/ryai.2020190195
  38. Yin J, 2020, J X-RAY SCI TECHNOL, V28, P683, DOI 10.3233/XST-200675
  39. Zech JR, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002683