Methods for Gene Co-expression Network Visualization and Analysis

Nenhuma Miniatura disponível
Citações na Scopus
2
Tipo de produção
bookPart
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER INTERNATIONAL PUBLISHING
Citação
Moreira-Filho, C. A.; Bando, S. Y.; Bertonha, F. B.; Silva, F. N.; Costa, L. D. F.. Methods for Gene Co-expression Network Visualization and Analysis. In: . Transcriptomics in Health and Disease, Second Edition: SPRINGER INTERNATIONAL PUBLISHING, 2022. p.143-163.
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Gene network analysis is an important tool for studying the changes in steady states that characterize cell functional properties, the genome-environment interplay, and the health-disease transitions. Moreover, gene co-expression and protein–protein interaction (PPI) data can be integrated with clinical, histopathological, and imaging information – a current practice in systems biology – leading, for instance, to the identification of unique and common drivers for disease conditions. In this chapter the fundamentals for gene co-expression network construction, visualization, and analysis are revised, emphasizing its scale-free nature, the measures that express its most relevant topological features, and methods for network validation. © The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Switzerland AG 2014, 2022.
Palavras-chave
Betweenness ity, Disease-related genes, Functional enrichment analysis, Functional genomics, Gene co-expression, Gene network analysis, Gene significance, Genomics, Interactome analysis, Metabolomics, Microarray, Motifs, Network connectivity, Network modules, Network nodes, Network topology, Network validation, Network visualization, Pearson’s correlation coefficient, Protein-protein interaction, Proteomics, RNA-seq, Scale free networks, Scale-free nature, Systems biology, Transcriptional modules, Transcriptomics, Validation
Referências
  1. Albert R., Scale-free networks in cell biology, J Cell Sci, 118, pp. 4947-4957, (2005)
  2. Albert R., Jeong H., Barabasi A.L., Error and attack tolerance of complex networks, Nature, 406, pp. 378-382, (2008)
  3. Allen K.D., Coffman C.J., Golightly Y.M., Comparison of pain measures among patients with osteoarthritis, J Pain, 11, pp. 522-527, (2010)
  4. Ang J.C., Mirzal A., Haron H., Supervised, unsupervised, and semi-supervised feature selection: A review on gene selection, IEEE/ACM Trans Comput Biol Bioinform, 13, pp. 971-989, (2016)
  5. Armingol E., Officer A., Harismendy O., Deciphering cell-cell interactions and communication from gene expression, Nat Rev Genet, 22, pp. 71-88, (2021)
  6. Arunkumar C., Sooraj M.P., Ramakrishnan S., A comparative performance evaluation of supervised feature selection algorithms on microarray datasets, Procedia Comput Sci, 115, pp. 209-217, (2017)
  7. Azevedo H., Moreira-Filho C.A., Topological robustness analysis of protein interaction networks reveals key targets for overcoming chemotherapy resistance in glioma, Sci Rep, 5, (2015)
  8. Bando S.Y., Silva F.N., Costa L D F., Complex network analysis of CA3 transcriptome reveals pathogenic and compensatory pathways in refractory temporal lobe epilepsy, Plos One, e79913, (2013)
  9. Bando S.Y., Iamashita P., Guth B.E., A hemolytic-uremic syndrome-associated strain O113:H21 Shiga toxin-producing Escherichia coli specifically expresses a transcriptional module containing dicA and is related to gene network dysregulation in caco-2 cells, Plos One, 12, 12, (2017)
  10. Bando S.Y., Iamashita P., Silva F.N., Dynamic gene network analysis of caco-2 cell response to Shiga toxin-producing Escherichia coli-associated hemolytic-uremic syndrome, Microorganisms, 7, 7, (2019)
  11. Bando S.Y., Bertonha F.B., Pimentel-Silva L.R., Hippocampal CA3 transcriptional modules associated with granule cell alterations and cognitive impairment in refractory mesial temporal lobe epilepsy patients, Sci Rep, 11, 1, (2021)
  12. Barabasi A.L., Oltvai Z.N., Network biology: Understanding the cell’s functional organization, Nat Rev Genet, 5, pp. 101-113, (2004)
  13. Barabasi A.L., Gulbahce N., Loscalzo J., Network medicine: A network-based approach to human disease, Nat Rev Genet, 13, pp. 56-68, (2011)
  14. Benson M., Breitling R., Network theory to understand microarray studies of complex diseases, Curr Mol Med, 6, pp. 695-701, (2006)
  15. Brandes U., A faster algorithm for betweenness ity, J Math Sociol, 25, pp. 163-177, (2001)
  16. Brazma A., Hingcamp P., Quackenbush J., Minimum information about a microarray experiment (MIAME)—toward standards for microarray data, Nat Genet, 29, pp. 365-371, (2001)
  17. Bumgarner R., Overview of DNA microarrays: Types, applications, and their future, Curr Protoc Mol Biol Chapter 22:Unit, 22, (2013)
  18. Cai J.J., Borenstein E., Petrov D.A., Broker genes in human disease, Genome Biol Evol, 2, pp. 815-825, (2010)
  19. Carter H., Hofree M., Ideker T., Genotype to phenotype via network analysis, Curr Opin Genet Dev, 23, pp. 611-621, (2013)
  20. Chaussabel D., Baldwin N., Democratizing systems immunology with modular transcriptional repertoire analyses, Nat Rev Immunol, 14, pp. 271-280, (2014)
  21. Chen E.Y., Tan C.M., Kou Y., Enrichr: Interactive and collaborative HTML5 gene list enrichment analysis tool, BMC Bioinformatics, 14, (2013)
  22. Cho D.-Y., Kim Y.-A., Przytycka T.M., Chapter 5: Network biology approach to complex diseases, Plos Comput Biol 8(12), e1002820, (2012)
  23. Clauset A., Shallizi C.R., Newman M.E.J., Power-law distributions in empirical data, SIAM Rev, 51, pp. 661-703, (2009)
  24. Cockrum C., Kaneshiro K.R., Rechtsteiner A., A primer for generating and using transcriptome data and gene sets, Development, 147, 24, (2020)
  25. Costa L D F., Mar T., Silva F.N., Concentric characterization and classification of complex network nodes: Application to an institutional collaboration network, Physica A, 387, pp. 6201-6214, (2008)
  26. Costa L D F., Oliveira O.N., Travieso G., Analyzing and modeling real-world phenomena with complex networks: A survey of applications, Adv Phys, 60, pp. 329-412, (2011)
  27. Costanzo M., Baryshnikova A., Bellay J., The genetic landscape of a cell, Science, 327, pp. 425-431, (2010)
  28. Costa-Silva J., Domingues D., Lopes F.M., RNA-Seq differential expression analysis: An extended review and a software tool, Plos One 12(12), e0190152, (2017)
  29. Cristino A.S., Williams S.M., Hawi Z., Neurodevelopmental and neuropsychiatric disorders represent an interconnected molecular system, Mol Psychiatry, 19, pp. 294-301, (2014)
  30. de Las Rivas J., Fontanillo C., Protein-protein interactions essentials: Key concepts to building and analyzing interactome networks, Plos Comput Biol, e1000807, (2010)
  31. Del Rio G., Koschutzki D., Coello G., How to identify essential genes from molecular networks?, BMC Syst Biol, 3, (2009)
  32. Elo L.L., Jarvenpaa H., Oresic M., Systematic construction of gene co-expression networks with applications to human T helper cell differentiation process, Bioinformatics, 23, pp. 2096-2103, (2007)
  33. Faro A., Giordano D., Spampinato C., Combining literature text mining with microarray data: Advances for system biology modeling, Brief Bioinform, 13, pp. 61-82, (2012)
  34. Flake G.W., Lawrence S.R., Giles C.L., Self-organization and identification of web communities, IEEE Comput, 35, pp. 66-71, (2002)
  35. Freeman L.C., ity in social networks, Conceptual Clarification. Soc Networks, 1, pp. 215-239, (1978)
  36. Fruchterman T.M.J., Reingold E.M., Graph drawing by force-directed placement software, Pract Exp, 21, pp. 1129-1164, (1991)
  37. Gaiteri C., Ding Y., French B., Beyond modules and hubs: The potential of gene coexpression networks for investigating molecular mechanisms of complex brain disorders, Genes Brain Behav, 13, pp. 13-24, (2014)
  38. Galan-Vasquez E., Perez-Rueda E., Identification of modules with similar gene regulation and metabolic functions based on co-expression data, Front Mol Biosci, 6, (2019)
  39. Geraci F., Saha I., Bianchini M., Rna-Seq Analysis: Methods, Applications and Challenges, (2020)
  40. Girvan M., Newman M.E., Community structure in social and biological networks, Proc Natl Acad Sci U S A, 99, pp. 7821-7826, (2002)
  41. Gysi D.M., Nowick K., Construction, comparison and evolution of networks in life sciences and other disciplines, J R Soc Interface 17(166), (2020)
  42. Horvath S., Dong J., Geometric interpretation of gene co-expression network analysis, Plos Comput Biol, e1000117, (2008)
  43. Hu J.X., Thomas C.E., Brunak S., Network biology concepts in complex disease comorbidities, Nat Rev Genet, 17, pp. 615-629, (2016)
  44. Ishiwata R.R., Morioka M.S., Ogishima S., BioCichlid: Dogma-based 3D visualization system of time-course microarray data on a hierarchical biological network, Bioinformatics, 25, pp. 543-544, (2009)
  45. Joshi A., Rienks M., Theofilatos K., Systems biology in cardiovascular disease: A multiomics approach, Nat Rev Cardiol, 18, pp. 313-330, (2021)
  46. Kakati T., Bhattacharyya D.K., Barah P., Comparison of methods for differential co-expression analysis for disease biomarker prediction, Comput Biol Med, (2019)
  47. Khatun M.S., Shoombuatong W., Hasan M.M., Evolution of sequence-based bioinformatics tools for protein-protein interaction prediction, Curr Genomics, 21, pp. 454-463, (2020)
  48. Kujawa K.A., Zembala-Nozynska E., Cortez A.J., Fibronectin and periostin as prognostic markers in ovarian cancer, Cell, 9, (2020)
  49. Kuleshov M.V., Jones M.R., Rouillard A.D., Enrichr: A comprehensive gene set enrichment analysis web server 2016 update, Nucleic Acids Res, 44, W1, pp. W90-W97, (2016)
  50. Langfelder P., Horvath S., WGCNA: An R package for weighted correlation network analysis, BMC Bioinformatics, 9, (2008)
  51. Langfelder P., Mischel P.S., Horvath S., When is hub gene selection better than standard meta-analysis?, Plos One, e61505, (2013)
  52. Lapointe L.C., Pedersen S.K., Dunne R., Discovery and validation of molecular biomarkers for colorectal adenomas and cancer with application to blood testing, Plos One, 7, 1, (2012)
  53. Lee W.P., Tzou W.S., Computational methods for discovering gene networks from expression data, Brief Bioinform, 10, pp. 408-423, (2009)
  54. Li A., Horwath S., Network module detection: Affinity search technique with the multi-node topological overlap measure, BMC Res Notes, 2, (2009)
  55. Liu Y.Y., Slotine J.J., Barabasi A.L., Controllability of complex networks, Nature, 473, pp. 167-173, (2011)
  56. Liu R., Li M., Liu Z.P., Identifying critical transitions and their leading biomolecular networks in complex diseases, Sci Rep, 2, (2012)
  57. Liu Y.Y., Slotine J.J., Barabasi A.L., Control ity and hierarchical structure in complex networks, Plos One, 7, 9, (2012)
  58. Mahendran N., Durai R., Vincent P.M., Machine learning based computational gene selection models: A survey, performance evaluation, open issues, and future research directions, Front Genet, (2020)
  59. Mantione K.J., Kream R.M., Kuzelova H., Comparing bioinformatic gene expression profiling methods: Microarray and RNA-Seq, Med Sci Monit Basic Res, 20, pp. 138-142, (2014)
  60. Manzoni C., Kia D.A., Vandrovcova J., Genome, transcriptome and proteome: The rise of omics data and their integration in biomedical sciences, Brief Bioinform, 19, pp. 286-302, (2018)
  61. Masuda N., Konno N., VIP-club phenomenon: Emergence of elites and masterminds in social networks, Soc Networks, 28, pp. 297-309, (2006)
  62. McAuley J.J., Costa L D F., Caetano T.S., Rich-club phenomenon across complex network hierarchies, Appl Phys Lett, 84103, (2007)
  63. Milo R., Shen-Orr S., Itzkovitz S., Network motifs: Simple building blocks of complex networks, Science, 298, pp. 824-827, (2002)
  64. Miron M., Woody O.Z., Marcil A., A methodology for global validation of microarray experiments, BMC Bioinformatics, 7, (2006)
  65. Misra B.B., Langefeld C.D., Olivier M., Integrated omics: Tools, advances, and future approaches, J Mol Endocrinol, 13, (2018)
  66. Moreira-Filho C.A., Bando S.Y., Bertonha F.B., Community structure analysis of transcriptional networks reveals distinct molecular pathways for early- and late-onset temporal lobe epilepsy with childhood febrile seizures, Plos One 10(5), e0128174, (2015)
  67. Moreira-Filho C.A., Bando S.Y., Bertonha F.B., Modular transcriptional repertoire and MicroRNA target analyses characterize genomic dysregulation in the thymus of Down syndrome infants, Oncotarget, 7, pp. 7497-7533, (2016)
  68. Nangraj A.S., Selvaraj G., Kaliamurthi S., Integrated PPI- and WGCNA-retrieval of hub gene signatures shared between Barrett’s esophagus and esophageal adenocarcinoma, Front Pharmacol, 11, (2020)
  69. Newman M.E.J., Modularity and community structure in networks, PNAS, 103, pp. 8577-8582, (2006)
  70. Newman M.E.J., Networks: An Introduction. Oxford University Press, (2010)
  71. Pavlopoulos G.A., O'Donoghue S.I., Satagopam V.P., Arena3D: Visualization of biological networks in 3D, BMC Syst Biol, 2, (2008)
  72. Pei G., Chen L., Zhang W., WGCNA application to proteomic and metabolomic data analysis, Methods Enzymol, 585, pp. 135-158, (2017)
  73. Prifti E., Zucker J.D., Clement K., Funnet: An integrative tool for exploring transcriptional interactions, Bioinformatics, 24, pp. 2636-2638, (2008)
  74. Core Team R., R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, (2012)
  75. Rao M.S., van Vleet T.R., Ciurlionis R., Comparison of RNA-seq and microarray gene expression platforms for the toxicogenomic evaluation of liver from short-term rat toxicity studies, Front Genet, 9, (2019)
  76. Ravasz E., Somera A.L., Mongru D.A., Hierarchical organization of modularity in metabolic networks, Science, 297, pp. 1551-1555, (2002)
  77. Rosenkrantz J.T., Aarts H., Abee T., Non-essential genes form the hubs of genome scale protein function and environmental gene expression networks in Salmonella enterica serovar Typhimurium, BMC Microbiol, 13, (2013)
  78. Saeed A., Sharov V., White J., TM4: A free, open-source system for microarray data management and analysis, Biotechniques, 34, pp. 374-378, (2003)
  79. Sahni N., Yi S., Zhong Q., Edgotype: A fundamental link between genotype and phenotype, Curr Opin Genet Dev, 23, pp. 649-657, (2013)
  80. Sahni N., Yi S., Taipale M., Widespread macromolecular interaction perturbations in human genetic disorders, Cell, 161, pp. 647-660, (2015)
  81. Saito R., Smoot M.E., Ono K., A travel guide to cytoscape plugins, Nat Methods, 9, pp. 1069-1076, (2012)
  82. Schroeder A., Mueller O., Stocker S., The RIN: An RNA integrity number for assigning integrity values to RNA measurements, BMC Mol Biol, 7, (2006)
  83. Shen-Orr S.S., Milo R., Mangan S., Network motifs in the transcriptional regulation network of Escherichia coli, Nat Genet, 31, pp. 64-68, (2002)
  84. Shi L., Perkins R.G., Fang H., Reproducible and reliable microarray results through quality control: Good laboratory proficiency and appropriate data analysis practices are essential, Curr Opin Biotechnol, 19, pp. 10-18, (2008)
  85. Sieberts S.K., Schadt E.E., Moving toward a system genetics view of disease, Mamm Genome, 18, pp. 389-401, (2007)
  86. Silva F.N., Rodrigues F.A., Oliveira Junior O.N., Quantifying the interdisciplinarity of scientific journals and fields, J Informetr, 7, pp. 469-477, (2013)
  87. Song L., Langfelder P., Horvath S., Comparison of co-expression measures: Mutual information, correlation, and model-based indices, BMC Bioinformatics, 13, (2012)
  88. Taylor I.W., Linding R., Wade-Farley D., Dynamic modularity in protein interaction networks predicts breast cancer outcome, Nat Biotechnol, 27, pp. 199-204, (2009)
  89. True L., Feng Z., Immunohistochemical validation of expression microarray results, J Mol Diagn, 7, pp. 149-151, (2005)
  90. Tuck D.P., Kluger H.M., Kluger Y., Characterizing disease states from topological properties of transcriptional regulatory networks, BMC Bioinformatics, 7, (2006)
  91. Turek C., Wrobel S., Piwowar M., OmicsON – integration of omics data with molecular networks and statistical procedures, Plos One 15(7), e0235398, (2020)
  92. van Dam S., Vosa U., van der Graaf A., Gene co-expression analysis for functional classification and gene-disease predictions, Brief Bioinform, 19, pp. 575-592, (2018)
  93. Vermeulen R., Schymanski E.L., Barabasi A.L., The exposome and health: Where chemistry meets biology, Science, 367, pp. 392-396, (2021)
  94. Villa-Vialaneix N., Liaubet L., Laurent T., The structure of a gene co-expression network reveals biological functions underlying eQTLs, Plos One, e60045, (2013)
  95. Vlachavas E.I., Bohn J., Uckert F., Detailed catalogue of multi-omics methodologies for identification of putative biomarkers and causal molecular networks in translational cancer research, Int J Mol Sci, 22, (2021)
  96. Wang H., Zheng H., Correlation of genetic features with dynamic modularity in the yeast interactome: A view from the structural perspective, IEEE Trans Nanobiosci, 11, pp. 244-250, (2012)
  97. Wang Q., Tang B., Song L et al (2013) 3DScapeCS: Application of 3 dimensional, parallel, dynamic network visualization in Cytoscape, BMC Bioinformatics, 14
  98. Wang X.D., Huang J.L., Yang L., Identification of human disease genes from interactome network using graphlet interaction, Plos One, e86142, (2014)
  99. Watkinson J., Liang K.C., Wang X., Inference of regulatory gene interactions from expression data using three-way mutual information, Ann N Y Acad Sci, 1158, pp. 302-313, (2009)
  100. Watts D.J., Strogatz S.H., Collective dynamics of “small word” networks, Nature, 393, pp. 440-442, (1998)
  101. Weirauch M.T., Dehmer M., Emmert-Streib F., Graber A., Salvador A., Gene expression network for the analysis of cDNA microarray data, Applied Statistics for Network Biology: Methods in Systems Biology, 1, pp. 215-250, (2011)
  102. Weiss J.M., Karma A., Robb Maclellan W., “Good enough solutions”and the genetics of complex diseases, Circ Res, 111, pp. 493-504, (2012)
  103. Winterbach W., van Mieghem P., Reinders M., Topology of molecular interaction networks, BMC Syst Biol, 7, (2013)
  104. Wu X., Wang W., Zheng W.X., Inferring topologies of complex networks with hidden variables, Phys Rev E, 46106, (2012)
  105. Wu L., Li M., Wang J.X., Controllability and its applications to biological networks, J Comput Sci Technol, 34, pp. 16-34, (2019)
  106. Yu H., Kim P.M., Sprecher E., The importance of bottlenecks in protein networks: Correlation with gene essentiality and expression dynamics, Plos Comput Biol, e59, (2007)
  107. Yuan Z., Zhao C., Di Z., Exact controllability of complex networks, Nat Commun, 4, (2013)
  108. Zhang B., Horvath S., A general framework for weighted gene co-expression network analysis, Stat Appl Genet Mol Biol 4:Article17, (2005)
  109. Zhang J., Ji Y., Zhang L., Extracting three-way gene interactions from microarray data, Bioinformatics, 23, pp. 2903-2909, (2007)
  110. Zhao W., Langfelder P., Fuller T., Weighted gene coexpression network analysis: State of the art, J Biopharm Stat, 20, pp. 281-300, (2010)
  111. Zhu X., Gerstein M., Snyder M., Getting connected: Analysis and principles of biological networks, Genes Dev, 21, pp. 1010-1024, (2007)