Impact of Three Methods of Ischemic Preconditioning on Ischemia-Reperfusion Injury in a Pig Model of Liver Transplantation

Carregando...
Imagem de Miniatura
Citações na Scopus
5
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS INC
Citação
JOURNAL OF INVESTIGATIVE SURGERY, v.35, n.4, p.900-909, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background Ischemic preconditioning (IPC), either direct (DIPC) or remote (RIPC), is a procedure aimed at reducing the harmful effects of ischemia-reperfusion (I/R) injury. Objectives To assess the local and systemic effects of DIPC, RIPC, and both combined, in the pig liver transplant model. Materials and methods Twenty-four pigs underwent orthotopic liver transplantation and were divided into 4 groups: control, direct donor preconditioning, indirect preconditioning at the recipient, and direct donor with indirect recipient preconditioning. The recorded parameters were: donor and recipient weight, graft-to-recipient weight ratio (GRWR), surgery time, warm and cold ischemia time, and intraoperative hemodynamic values. Blood samples were collected before native liver removal (BL) and at 0 h, 1 h, 3 h, 6 h, 12 h, 18 h, and 24 h post-reperfusion for the biochemical tests: aspartate aminotransferase (AST), alanine aminotransferase (ALT), alkaline phosphatase (ALP), gamma-glutamyl transferase (GGT), creatinine, BUN (blood urea nitrogen), lactate, total and direct bilirubin. Histopathological examination of liver, gut, kidney, and lung fragments were performed, as well as molecular analyses for expression of the apoptosis-related BAX (pro-apoptotic) and Bcl-XL (anti-apoptotic) genes, eNOS (endothelial nitric oxide synthase) gene, and IL-6 gene related to inflammatory ischemia-reperfusion injury, using real-time polymerase chain reaction (RT-PCR). Results There were no differences between the groups regarding biochemical and histopathological parameters. We found a reduced ratio between the expression of the BAX gene and Bcl-XL in the livers of animals with IPC versus the control group. Conclusions DIPC, RIPC or a combination of both, produce beneficial effects at the molecular level without biochemical or histological changes.
Palavras-chave
Experimental surgery, hepatobiliary surgery, ischemia-reperfusion, preconditioning, surgical technique, pediatric surgery
Referências
  1. Andreani P, 2010, HPB, V12, P439, DOI 10.1111/j.1477-2574.2010.00194.x
  2. Tannuri ACA, 2017, PEDIATR TRANSPLANT, V21, DOI 10.1111/petr.12928
  3. Barri YM, 2009, LIVER TRANSPLANT, V15, P475, DOI 10.1002/lt.21682
  4. Barrier A, 2005, FASEB J, V19, P1617, DOI 10.1096/fj.04-3445com
  5. Bei WJ, 2016, J CARDIOVASC PHARM T, V21, P53, DOI 10.1177/1074248415590197
  6. Belperio JA, 2002, J CLIN INVEST, V110, P1703, DOI 10.1172/JCI200215849
  7. Candilio L, 2011, J CARDIOVASC PHARM T, V16, P304, DOI 10.1177/1074248411411711
  8. CHIU CJ, 1970, ARCH SURG-CHICAGO, V101, P478
  9. Czigany Z, 2018, PLOS ONE, V13, DOI 10.1371/journal.pone.0195507
  10. Gomes PFM, 2018, TRANSPL P, V50, P3840, DOI 10.1016/j.transproceed.2018.04.034
  11. Leal AJG, 2015, CLINICS, V70, P126, DOI 10.6061/clinics/2015(02)10
  12. Leal AJG, 2013, CLINICS, V68, P1152, DOI 10.6061/clinics/2013(08)15
  13. Gustafsson BI, 2006, TRANSPLANT P, V38, P2708, DOI 10.1016/j.transproceed.2006.07.044
  14. Koneru B, 2007, AM J TRANSPLANT, V7, P2788, DOI 10.1111/j.1600-6143.2007.02009.x
  15. Koti RS, 2002, LIVER TRANSPLANT, V8, P1182, DOI 10.1053/jlts.2002.36846
  16. Koti RS, 2002, FASEB J, V16, P1654, DOI 10.1096/fj.01-1034fje
  17. Krogstrup NV, 2017, AM J TRANSPLANT, V17, P1042, DOI 10.1111/ajt.14075
  18. Kupiec-Weglinski JW, 2005, TRANSPL P, V37, P1653, DOI 10.1016/j.transproceed.2005.03.134
  19. Landman TRJ, 2019, STROKE, V50, P1934, DOI 10.1161/STROKEAHA.119.025494
  20. Li DY, 2015, TRANSPL P, V47, P2683, DOI 10.1016/j.transproceed.2015.07.031
  21. Liu QL, 2012, LANGENBECK ARCH SURG, V397, P1323, DOI 10.1007/s00423-012-1022-9
  22. Liu XQ, 2019, ANESTH ANALG, V129, P1742, DOI 10.1213/ANE.0000000000004434
  23. McLeod SL, 2017, J AM HEART ASSOC, V6, DOI 10.1161/JAHA.117.005522
  24. Mendes-Braz M, 2012, J BIOMED BIOTECHNOL, DOI 10.1155/2012/298657
  25. Nemeth N, 2021, INT J MOL SCI, V22, DOI 10.3390/ijms22041864
  26. PRZYKLENK K, 1993, CIRCULATION, V87, P893, DOI 10.1161/01.CIR.87.3.893
  27. Racusen Lorraine C, 2004, Am J Transplant, V4, P1562, DOI 10.1111/j.1600-6143.2004.00585.x
  28. Rampes S, 2019, J BIOMED RES, V33, P221, DOI 10.7555/JBR.32.20180087
  29. Moreira DDAR, 2014, J SURG RES, V189, P313, DOI 10.1016/j.jss.2014.03.018
  30. Robertson FP, 2017, HPB, V19, P757, DOI 10.1016/j.hpb.2017.05.005
  31. Scheuer Peter J, 2002, Clin Liver Dis, V6, P335, DOI 10.1016/S1089-3261(02)00009-0
  32. Shimoda M, 2007, PATHOBIOLOGY, V74, P42, DOI 10.1159/000101050
  33. Softeland JM, 2019, INT J MOL SCI, V20, DOI 10.3390/ijms20133135
  34. Song XY, 2012, INT J BIOL SCI, V8, P707, DOI 10.7150/ijbs.4231
  35. Tan FQ, 2005, MICROSURG, V25, P556, DOI 10.1002/micr.20161
  36. Tapuria N, 2008, J SURG RES, V150, P304, DOI 10.1016/j.jss.2007.12.747
  37. Theodoraki K, 2011, SURG TODAY, V41, P620, DOI 10.1007/s00595-010-4444-4
  38. Yalavarthy Rajesh, 2007, Hemodial Int, V11 Suppl 3, pS7, DOI 10.1111/j.1542-4758.2007.00223.x
  39. Yandza T, 2012, J SURG RES, V178, P807, DOI 10.1016/j.jss.2012.07.025
  40. Zhang H, 2021, SURG TODAY, V51, P1251, DOI 10.1007/s00595-020-02205-1