Predicting emotion perception abilities for cochlear implant users

Carregando...
Imagem de Miniatura
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
TAYLOR & FRANCIS LTD
Autores
PAQUETTE, S.
DEROCHE, M. L. D.
LEHMANN, A.
Citação
INTERNATIONAL JOURNAL OF AUDIOLOGY, v.62, n.10, p.946-954, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Objective In daily life, failure to perceive emotional expressions can result in maladjusted behaviour. For cochlear implant users, perceiving emotional cues in sounds remains challenging, and the factors explaining the variability in patients' sensitivity to emotions are currently poorly understood. Understanding how these factors relate to auditory proficiency is a major challenge of cochlear implant research and is critical in addressing patients' limitations. Design To fill this gap, we evaluated different auditory perception aspects in implant users (pitch discrimination, music processing and speech intelligibility) and correlated them to their performance in an emotion recognition task. Study sample Eighty-four adults (18-76 years old) participated in our investigation; 42 cochlear implant users and 42 controls. Cochlear implant users performed worse than their controls on all tasks, and emotion perception abilities were correlated to their age and their clinical outcome as measured in the speech intelligibility task. Results As previously observed, emotion perception abilities declined with age (here by about 2-3% in a decade). Interestingly, even when emotional stimuli were musical, CI users' skills relied more on processes underlying speech intelligibility. Conclusions These results suggest that speech processing remains a clinical priority even when one is interested in affective skills.
Palavras-chave
Emotion, cochlear implant, auditory perception, speech, pitch
Referências
  1. Alemi R, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-73932-1
  2. Belin P, 2008, BEHAV RES METHODS, V40, P531, DOI 10.3758/BRM.40.2.531
  3. Bernstein JGW, 2005, J ACOUST SOC AM, V117, P3816, DOI 10.1121/1.1904268
  4. Canlon B, 2010, SPRINGER HANDB AUDIT, V34, P39, DOI 10.1007/978-1-4419-0993-0_3
  5. Cannon SA, 2022, EAR HEARING, V43, P323, DOI 10.1097/AUD.0000000000001095
  6. Castro SL, 2014, MUSIC PERCEPT, V32, P125, DOI 10.1525/MP.2014.32.2.125
  7. Chronaki G, 2015, BRIT J DEV PSYCHOL, V33, P218, DOI 10.1111/bjdp.12075
  8. Cooper WB, 2008, EAR HEARING, V29, P618, DOI 10.1097/AUD.0b013e318174e787
  9. de Lima JP, 2018, CODAS, V30, DOI 10.1590/2317-1782/20182018006
  10. Deroche MLD, 2019, EAR HEARING, V40, P1197, DOI 10.1097/AUD.0000000000000701
  11. Deroche MLD, 2019, SCI REP-UK, V9, DOI 10.1038/s41598-018-36393-1
  12. Deroche MLD, 2016, FRONT NEUROSCI-SWITZ, V10, DOI 10.3389/fnins.2016.00073
  13. Deroche MLD, 2014, FRONT NEUROSCI-SWITZ, V8, DOI 10.3389/fnins.2014.00282
  14. Fitzgibbons P J, 1996, J Am Acad Audiol, V7, P183
  15. Frühholz S, 2016, NEUROSCI BIOBEHAV R, V68, P96, DOI 10.1016/j.neubiorev.2016.05.002
  16. Gilbers S, 2015, I-PERCEPTION, V6, DOI 10.1177/0301006615599139
  17. Gilbert ML, 2022, EAR HEARING, V43, P862, DOI 10.1097/AUD.0000000000001145
  18. Gosselin N, 2015, CORTEX, V71, P171, DOI 10.1016/j.cortex.2015.06.022
  19. Hopyan T, 2016, CHILD NEUROPSYCHOL, V22, P366, DOI 10.1080/09297049.2014.992400
  20. Juslin PN, 2003, PSYCHOL BULL, V129, P770, DOI 10.1037/0033-2909.129.5.770
  21. Lin YS, 2022, LARYNGOSCOPE INVEST, V7, P250, DOI 10.1002/lio2.732
  22. Long GC, 2021, MALAYS J MED SCI, V28, P10, DOI 10.21315/mjms2021.28.5.2
  23. Looi Valerie, 2012, Seminars in Hearing, V33, P307, DOI 10.1055/s-0032-1329222
  24. Luo X, 2018, J ACOUST SOC AM, V144, pEL429, DOI 10.1121/1.5079575
  25. Moran M, 2016, INT J AUDIOL, V55, pS57, DOI 10.3109/14992027.2016.1157630
  26. Nunes-Silva Marília, 2012, Dement. neuropsychol., V6, P244, DOI 10.1590/S1980-57642012DN06040008
  27. Paquette S, 2018, HEARING RES, V370, P272, DOI 10.1016/j.heares.2018.08.009
  28. Paquette S, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00509
  29. Peretz I, 2003, ANN NY ACAD SCI, V999, P58, DOI 10.1196/annals.1284.006
  30. Peterson NR, 2010, RESTOR NEUROL NEUROS, V28, P237, DOI 10.3233/RNN-2010-0535
  31. Schneider Bruce A., 2001, Seminars in Hearing, V22, P227, DOI 10.1055/s-2001-15628
  32. Schorr EA, 2009, J SPEECH LANG HEAR R, V52, P141, DOI 10.1044/1092-4388(2008/07-0213)
  33. Summers V, 1998, J SPEECH LANG HEAR R, V41, P1294, DOI 10.1044/jslhr.4106.1294
  34. Tawdrous MM, 2022, TRENDS HEAR, V26, DOI 10.1177/23312165221083091
  35. Thompson WF, 2012, P NATL ACAD SCI USA, V109, P19027, DOI 10.1073/pnas.1210344109
  36. Trimmer CG, 2008, EMOTION, V8, P838, DOI 10.1037/a0014080
  37. Turgeon C, 2014, CLIN NEUROPHYSIOL, V125, P827, DOI 10.1016/j.clinph.2013.09.035
  38. van Dijk JE, 1999, AUDIOLOGY, V38, P109
  39. Volkova Anna, 2013, Cochlear Implants Int, V14, P80, DOI 10.1179/1754762812Y.0000000004
  40. Vongpoisal T, 2007, J SPEECH LANG HEAR R, V50, P1139, DOI 10.1044/1092-4388(2007/079)
  41. Waaramaa T, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00344
  42. Wang DJ, 2013, FRONT PSYCHOL, V4, DOI 10.3389/fpsyg.2013.00351
  43. Wiefferink CH, 2013, J DEAF STUD DEAF EDU, V18, P175, DOI 10.1093/deafed/ens042
  44. Wilson BS, 2008, HEARING RES, V242, P3, DOI 10.1016/j.heares.2008.06.005
  45. Zeng FG, 2002, HEARING RES, V174, P101, DOI 10.1016/S0378-5955(02)00644-5