Increased Expression of miR-223-3p and miR-375-3p and Anti-Inflammatory Activity in HDL of Newly Diagnosed Women in Advanced Stages of Breast Cancer

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
MDPI
Autores
SAWADA, Maria Isabela Bloise Alves Caldas
REIS, Mozania
XAVIER, Jacira
HIRATA, Andrea Harumy de Lima
GEBRIM, Luiz Henrique
CAMACHO, Cleber Pinto
Citação
INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, v.24, n.16, article ID 12762, 15p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The expression of inflammation-related miRs bound to high-density lipoproteins (HDLs), the anti-inflammatory activity of HDLs isolated from individuals with breast cancer, and controls were determined. Forty newly diagnosed women with breast cancer naive of treatment and 10 control participants were included. Cholesterol-loaded bone-marrow-derived macrophages were incubated with HDL from both groups and challenged with lipopolysaccharide (LPS). Interleukin 6 (IL6) and tumor necrosis factor (TNF) in the medium were quantified. The miRs in HDLs were determined by RT-qPCR. Age, body mass index, menopausal status, plasma lipids, and HDL composition were similar between groups. The ability of HDL to inhibit IL6 and TNF production was higher in breast cancer compared to controls, especially in advanced stages of the disease. The miR-223-3p and 375-3p were higher in the HDLs of breast cancer independent of the histological type of the tumor and had a high discriminatory power between breast cancer and controls. The miR-375-3p was greater in the advanced stages of the disease and was inversely correlated with the secretion of inflammatory cytokines. Inflammation-related miRs and the anti-inflammatory role of HDLs may have a significant impact on breast cancer pathophysiology.
Palavras-chave
HDL, plasma lipids, breast cancer, microRNA, inflammation
Referências
  1. Allison KH, 2020, J CLIN ONCOL, V38, P1346, DOI 10.1200/JCO.19.02309
  2. BASU SK, 1976, P NATL ACAD SCI USA, V73, P3178, DOI 10.1073/pnas.73.9.3178
  3. Beeghly-Fadiel A, 2020, INT J EPIDEMIOL, V49, P1117, DOI 10.1093/ije/dyz242
  4. Borresen-Dale AL, 2003, HUM MUTAT, V21, P292, DOI 10.1002/humu.10174
  5. Campos AD, 2023, FRONT ONCOL, V13, DOI 10.3389/fonc.2023.1111094
  6. Centonze G, 2022, FRONT ONCOL, V12, DOI 10.3389/fonc.2022.906670
  7. Chekhun V. F., 2020, Experimental Oncology, V42, P162, DOI 10.32471/exp-oncology.2312-8852.vol-42-no-3.14805
  8. Citron F, 2020, CANCER RES, V80, P1064, DOI 10.1158/0008-5472.CAN-19-1793
  9. Fabris L, 2016, ONCOGENE, V35, P4914, DOI 10.1038/onc.2016.23
  10. Fan Y, 2015, INT J BIOL MARKER, V30, pE200, DOI 10.5301/jbm.5000143
  11. FRIEDEWALD WT, 1972, CLIN CHEM, V18, P499
  12. Furberg AS, 2004, J NATL CANCER I, V96, P1152, DOI 10.1093/jnci/djh216
  13. Goldhirsch A, 2011, ANN ONCOL, V22, P1736, DOI 10.1093/annonc/mdr304
  14. Guo P, 2014, P NATL ACAD SCI USA, V111, P14710, DOI 10.1073/pnas.1408556111
  15. Hainaut P, 2000, ADV CANCER RES, V77, P81
  16. Hamilton E, 2021, CANCER TREAT REV, V100, DOI 10.1016/j.ctrv.2021.102286
  17. Hammond MEH, 2010, ARCH PATHOL LAB MED, V134, P907, DOI [10.1043/1543-2165-134.6.907, 10.1200/JCO.2009.25.6529, 10.1200/JOP.777003]
  18. Heberle H, 2015, BMC BIOINFORMATICS, V16, DOI 10.1186/s12859-015-0611-3
  19. His M, 2017, CANCER CAUSE CONTROL, V28, P77, DOI 10.1007/s10552-016-0832-4
  20. Huang XQ, 2022, THORAC CANCER, V13, P269, DOI 10.1111/1759-7714.14268
  21. Hubbard AK, 2000, FREE RADICAL BIO MED, V28, P1379, DOI 10.1016/S0891-5849(00)00223-9
  22. IHLE JN, 1995, ANNU REV IMMUNOL, V13, P369, DOI 10.1146/annurev.iy.13.040195.002101
  23. Johnson R, 2017, BREAST CANCER-TARGET, V9, P383, DOI 10.2147/BCTT.S131038
  24. Kucharska-Newton AM, 2008, ANN EPIDEMIOL, V18, P671, DOI 10.1016/j.annepidem.2008.06.006
  25. Li X, 2017, BREAST, V32, P1, DOI 10.1016/j.breast.2016.11.024
  26. LOWRY OH, 1951, J BIOL CHEM, V193, P265
  27. Marotta LLC, 2011, J CLIN INVEST, V121, P2723, DOI 10.1172/JCI44745
  28. Martin LJ, 2015, JNCI-J NATL CANCER I, V107, DOI 10.1093/jnci/djv032
  29. Melvin JC, 2012, CANCER EPIDEM BIOMAR, V21, P1381, DOI 10.1158/1055-9965.EPI-12-0188
  30. Michell DL, 2022, J BIOL CHEM, V298, DOI 10.1016/j.jbc.2022.101952
  31. Minanni CA, 2021, NUTRIENTS, V13, DOI 10.3390/nu13103633
  32. Mooberry LK, 2016, FRONT PHARMACOL, V7, DOI 10.3389/fphar.2016.00466
  33. Nazir S, 2020, ADV DRUG DELIVER REV, V159, P94, DOI 10.1016/j.addr.2020.10.006
  34. Ni HB, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0142669
  35. Nowake C, 2018, NAT COMMUN, V9, DOI 10.1038/s41467-018-06467-9
  36. Piñero J, 2020, NUCLEIC ACIDS RES, V48, pD845, DOI 10.1093/nar/gkz1021
  37. Rosette C, 2005, CARCINOGENESIS, V26, P943, DOI 10.1093/carcin/bgi070
  38. Samadi S, 2019, J CELL BIOCHEM, V120, P5756, DOI 10.1002/jcb.27862
  39. Sawada MIBAC, 2023, SCI REP-UK, V13, DOI 10.1038/s41598-023-35764-7
  40. Schütz F, 2017, ONCOL RES TREAT, V40, P294, DOI 10.1159/000464353
  41. Simonini PDR, 2010, CANCER RES, V70, P9175, DOI 10.1158/0008-5472.CAN-10-1318
  42. Sung H, 2021, CA-CANCER J CLIN, V71, P209, DOI [10.3322/caac.21660, 10.3322/caac.21492]
  43. Tan MJ, 2023, TRENDS ENDOCRIN MET, V34, P303, DOI 10.1016/j.tem.2023.02.009
  44. Terkelsen T, 2020, BREAST CANCER RES, V22, DOI 10.1186/s13058-020-01295-6
  45. Vickers KC, 2011, NAT CELL BIOL, V13, P423, DOI 10.1038/ncb2210
  46. Wang SY, 2017, J CLIN INVEST, V127, P4498, DOI 10.1172/JCI91553
  47. Wolfe AR, 2016, INT J RADIAT ONCOL, V95, P791, DOI 10.1016/j.ijrobp.2016.01.025
  48. Yoshikawa M, 2018, ONCOL LETT, V15, P9584, DOI 10.3892/ol.2018.8457
  49. Yuan BY, 2016, TUMOR BIOL, V37, P3581, DOI 10.1007/s13277-015-4141-4
  50. Zou QY, 2017, EXP THER MED, V14, P1198, DOI 10.3892/etm.2017.4593