Segmented solenoid RF coils for MRI of ex vivo brain samples at ultra-high field preclinical and clinical scanners

Nenhuma Miniatura disponível
Citações na Scopus
1
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
ELSEVIER
Autores
PAPOTI, Daniel
SZCZUPAK, Diego
SANTOS, Luiz G. C.
SCHAEFFER, David J.
VIDOTO, Edson L. G.
TANNUS, Alberto
SILVA, Afonso C.
Citação
JOURNAL OF MAGNETIC RESONANCE OPEN, v.16-17, article ID 100103, 8p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Magnetic resonance imaging (MRI) is a well-known and widespread imaging modality for neuroscience studies and the clinical diagnoses of neurological disorders, mainly due to its capability to visualize brain microstructures and quantify various metabolites. Additionally, its noninvasive nature makes possible the correlation of high-resolution MRI from ex vivo brain samples with histology, supporting the study of neurodegenerative disorders such as Alzheimer's or Parkinson's disease. However, the quality and resolution of ex vivo MRI highly depend on the availability of specialized radiofrequency coils with maximized filling factors for the different sizes and shapes of the samples to be studied. For instance, small, dedicated radiofrequency (RF) coils are not always commercially available in ultrahigh field whole-body MRI scanners. Even for ultrahigh field preclinical scanners, specific RF coils for ex vivo MRI are expensive and not always available. Here, we describe the design and construction of two RF coils based on the solenoid geometry for ex vivo MRI of human brain tissues in a 7T whole-body scanner and for ex vivo MRI of marmoset brain samples in a 9.4T preclinical scanner. We designed the 7T solenoid RF coil to maximize the filling factor of human brain samples conditioned on cassettes for histology, while the 9.4T solenoid was constructed to accommodate marmoset brain samples conditioned in 50 ml centrifuge tubes. Both solenoid designs operate in transceiver mode. The measured B1 +maps show a high level of homogeneity in the imaging volume of interest, with a high signal-to-noise ratio over the imaging volume. High-resolution (80 mu m in plane, 500 mu m slice thickness) images of human brain samples were acquired with the 7T solenoid, while marmoset brain samples were acquired with an isotropic resolution of 60 mu m using the 9.4T solenoid coil.
Palavras-chave
RF coils, Magnetic resonance imaging, Ex vivo MRI, Solenoid coils
Referências
  1. ALDERMAN DW, 1979, J MAGN RESON, V36, P447, DOI 10.1016/0022-2364(79)90123-9
  2. CARLSON JW, 1986, MAGNET RESON MED, V3, P778, DOI 10.1002/mrm.1910030513
  3. Dawe RJ, 2009, MAGN RESON MED, V61, P810, DOI 10.1002/mrm.21909
  4. Edlow BL, 2019, SCI DATA, V6, DOI 10.1038/s41597-019-0254-8
  5. Giovannetti G, 2012, CONCEPT MAGN RESON B, V41B, P57, DOI 10.1002/cmr.b.21210
  6. Haase A, 2000, CONCEPT MAGNETIC RES, V12, P361, DOI 10.1002/1099-0534(2000)12:6<361::AID-CMR1>3.0.CO;2-L
  7. HAYES CE, 1985, J MAGN RESON, V63, P622, DOI 10.1016/0022-2364(85)90257-4
  8. Hidalgo SS, 2009, REV MEX FIS, V55, P140
  9. Hoang DM, 2014, MAGN RESON MED, V71, P1932, DOI 10.1002/mrm.24841
  10. HORNAK JP, 1986, J MAGN RESON, V68, P319, DOI 10.1016/0022-2364(86)90248-9
  11. HOULT DI, 1976, J MAGN RESON, V24, P71, DOI 10.1016/0022-2364(76)90233-X
  12. Langkammer C, 2012, NEUROIMAGE, V62, P1593, DOI 10.1016/j.neuroimage.2012.05.049
  13. Lee HS, 2008, SCANNING, V30, P419, DOI 10.1002/sca.20118
  14. Mispelter J, 2015, Biomed. Experiments, DOI [10.1142/p759, DOI 10.1142/P759]
  15. Mispelter J, 2008, CR CHIM, V11, P340, DOI 10.1016/j.crci.2007.10.003
  16. Orzada S, 2008, Magn. Reson. Med.: Official J. Soc. Magn. Reson. Med. /Soc. Magn. Reson. Med., V14
  17. Orzada S, 2019, PLOS ONE, V14, DOI 10.1371/journal.pone.0222452
  18. Pfefferbaum A, 2004, NEUROIMAGE, V21, P1585, DOI 10.1016/j.neuroimage.2003.11.024
  19. Roebroeck A, 2019, NMR BIOMED, V32, DOI 10.1002/nbm.3941
  20. ROEMER PB, 1990, MAGNET RESON MED, V16, P192, DOI 10.1002/mrm.1910160203
  21. Salmon CEG, 2006, BRAZ J PHYS, V36, P4, DOI 10.1590/S0103-97332006000100004
  22. Schmierer K, 2007, NEUROIMAGE, V35, P467, DOI 10.1016/j.neuroimage.2006.12.010
  23. Shatil AS, 2016, FRONT NEUROL, V7, DOI 10.3389/fneur.2016.00208
  24. Stollberger R, 1996, MAGNET RESON MED, V35, P246, DOI 10.1002/mrm.1910350217
  25. Thapa B, 2016, CONCEPT MAGN RESON B, V46, P57, DOI 10.1002/cmr.b.21321
  26. Vegh V, 2012, MAGN RESON IMAGING, V30, P1177, DOI 10.1016/j.mri.2012.04.027
  27. Wong W.H., 2011, Encyclopedia of Magnetic Resonance, DOI [10.1002/9780470034590.emrstm1133, DOI 10.1002/9780470034590.EMRSTM1133]