Exploring the mediation of DNA methylation across the epigenome between childhood adversity and First Episode of Psychosis-findings from the EU-GEI study

Nenhuma Miniatura disponível
Citações na Scopus
2
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGERNATURE
Autores
ALAMEDA, Luis
LIU, Zhonghua
SHAM, Pak C.
AAS, Monica
TROTTA, Giulia
RODRIGUEZ, Victoria
FORTI, Marta Di
STILO, Simona A.
KANDASWAMY, Radhika
ARANGO, Celso
Citação
MOLECULAR PSYCHIATRY, v.28, n.5, p.2095-2106, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
AbtractStudies conducted in psychotic disorders have shown that DNA-methylation (DNAm) is sensitive to the impact of Childhood Adversity (CA). However, whether it mediates the association between CA and psychosis is yet to be explored. Epigenome wide association studies (EWAS) using the Illumina Infinium-Methylation EPIC array in peripheral blood tissue from 366 First-episode of psychosis and 517 healthy controls was performed. Adversity scores were created for abuse, neglect and composite adversity with the Childhood Trauma Questionnaire (CTQ). Regressions examining (I) CTQ scores with psychosis; (II) with DNAm EWAS level and (III) between DNAm and caseness, adjusted for a variety of confounders were conducted. Divide-Aggregate Composite-null Test for the composite null-hypothesis of no mediation effect was conducted. Enrichment analyses were conducted with missMethyl package and the KEGG database. Our results show that CA was associated with psychosis (Composite: OR = 1.68; p = p < 0.001; neglect: OR = 2.27; p = <0.001). None of the CpG sites significantly mediated the adversity-psychosis association after Bonferroni correction (p < 8.1 x 10(-8)). However, 28, 34 and 29 differentially methylated probes associated with 21, 27, 20 genes passed a less stringent discovery threshold (p < 5 x 10(-5)) for composite, abuse and neglect respectively, with a lack of overlap between abuse and neglect. These included genes previously associated to psychosis in EWAS studies, such as PANK1, SPEG TBKBP1, TSNARE1 or H2R. Downstream gene ontology analyses did not reveal any biological pathways that survived false discovery rate correction. Although at a non-significant level, DNAm changes in genes previously associated with schizophrenia in EWAS studies may mediate the CA-psychosis association. These results and associated involved processes such as mitochondrial or histaminergic disfunction, immunity or neural signalling requires replication in well powered samples. The lack of overlap between mediating genes associated with abuse and neglect suggests differential biological trajectories linking CA subtypes and psychosis.
Palavras-chave
Referências
  1. Aas M, 2023, PSYCHOL MED, V53, P1970, DOI 10.1017/S0033291721003664
  2. Aas M, 2014, J PSYCHIATR RES, V59, P14, DOI 10.1016/j.jpsychires.2014.08.011
  3. Aberg KA, 2014, JAMA PSYCHIAT, V71, P255, DOI 10.1001/jamapsychiatry.2013.3730
  4. Ackerman SD, 2018, J EXP MED, V215, P941, DOI 10.1084/jem.20161714
  5. Alameda L, 2022, PSYCHOL MED, V52, P1645, DOI 10.1017/S0033291721005559
  6. Alameda L, 2021, SCHIZOPHRENIA BULL, V47, P975, DOI 10.1093/schbul/sbaa199
  7. Alameda L, 2020, PSYCHOL MED, V50, P1966, DOI 10.1017/S0033291720002421
  8. Alameda L, 2018, P NATL ACAD SCI USA, V115, P12495, DOI 10.1073/pnas.1812821115
  9. Arranz MJ, 2021, TRANSL PSYCHIAT, V11, DOI 10.1038/s41398-020-01139-z
  10. Atmaca M, 2004, HUM PSYCHOPHARM CLIN, V19, P37, DOI 10.1002/hup.477
  11. Atmaca M, 2003, HUM PSYCHOPHARM CLIN, V18, P457, DOI 10.1002/hup.514
  12. Barfield R, 2017, GENET EPIDEMIOL, V41, P824, DOI 10.1002/gepi.22084
  13. BARON RM, 1986, J PERS SOC PSYCHOL, V51, P1173, DOI 10.1037/0022-3514.51.6.1173
  14. Bernstein DP, 2003, CHILD ABUSE NEGLECT, V27, P169, DOI 10.1016/S0145-2134(02)00541-0
  15. BERNSTEIN DP, 1994, AM J PSYCHIAT, V151, P1132, DOI 10.1176/ajp.151.8.1132
  16. Bhering LL, 2017, CROP BREED APPL BIOT, V17, P187, DOI 10.1590/1984-70332017v17n2s29
  17. Binder EB, 2017, EUR J PSYCHOTRAUMATO, V8, DOI 10.1080/20008198.2017.1412745
  18. Birnbaum R, 2020, SCHIZOPHR RES, V217, P105, DOI 10.1016/j.schres.2019.02.005
  19. BOWTELL DDL, 1987, ANAL BIOCHEM, V162, P463, DOI 10.1016/0003-2697(87)90421-0
  20. Broce I, 2018, PLOS MED, V15, DOI 10.1371/journal.pmed.1002487
  21. Cabungcal JH, 2013, P NATL ACAD SCI USA, V110, P9130, DOI 10.1073/pnas.1300454110
  22. Chiou B, 2021, GLIA, V69, P413, DOI 10.1002/glia.23906
  23. Christy A, 2023, SCHIZOPHRENIA BULL, V49, P285, DOI 10.1093/schbul/sbac105
  24. Cuenod M, 2022, MOL PSYCHIATR, V27, P1886, DOI 10.1038/s41380-021-01374-w
  25. Dai HM, 2007, NEUROSCI RES, V57, P306, DOI 10.1016/j.neures.2006.10.020
  26. Daugherty M, 2002, J BIOL CHEM, V277, P21431, DOI 10.1074/jbc.M201708200
  27. Dietz PM, 2011, AM J EPIDEMIOL, V173, P355, DOI 10.1093/aje/kwq381
  28. Elliott HR, 2014, CLIN EPIGENETICS, V6, DOI 10.1186/1868-7083-6-4
  29. Farzin D, 2005, IRANIAN J MED SCI, V30
  30. Fromer M, 2016, NAT NEUROSCI, V19, P1442, DOI 10.1038/nn.4399
  31. Gayer-Anderson C, 2020, SOC PSYCH PSYCH EPID, V55, P645, DOI 10.1007/s00127-020-01831-x
  32. Grinchii D, 2020, INT J MOL SCI, V21, DOI 10.3390/ijms21249532
  33. Haas HL, 2008, PHYSIOL REV, V88, P1183, DOI 10.1152/physrev.00043.2007
  34. Hannon E, 2021, ELIFE, V10, DOI 10.7554/eLife.58430
  35. Hannon E, 2016, GENOME BIOL, V17, DOI 10.1186/s13059-016-1041-x
  36. Hannon E, 2015, EPIGENETICS-US, V10, P1024, DOI 10.1080/15592294.2015.1100786
  37. Houseman EA, 2012, BMC BIOINFORMATICS, V13, DOI 10.1186/1471-2105-13-86
  38. Howes OD, 2017, BIOL PSYCHIAT, V81, P9, DOI 10.1016/j.biopsych.2016.07.014
  39. Hu WW, 2017, PHARMACOL THERAPEUT, V175, P116, DOI 10.1016/j.pharmthera.2017.02.039
  40. Iwabuchi K, 2004, ANN NY ACAD SCI, V1025, P129, DOI 10.1196/annals.1316.016
  41. Jaenisch R, 2003, NAT GENET, V33, P245, DOI 10.1038/ng1089
  42. JEANPIERRE M, 1987, NUCLEIC ACIDS RES, V15, P9611, DOI 10.1093/nar/15.22.9611
  43. Ji H, 2010, NATURE, V467, P338, DOI 10.1038/nature09367
  44. KAMINSKY R, 1990, LANCET, V335, P1351, DOI 10.1016/0140-6736(90)91237-5
  45. Kandaswamy R, 2021, EPIGENETICS-US, V16, P1169, DOI 10.1080/15592294.2020.1853317
  46. Karlstedt K, 2001, NEUROSCIENCE, V102, P201, DOI 10.1016/S0306-4522(00)00464-4
  47. Kebir O, 2017, MOL PSYCHIATR, V22, P512, DOI 10.1038/mp.2016.53
  48. Kolomeets NS, 2022, EUR ARCH PSY CLIN N, V272, P947, DOI 10.1007/s00406-021-01353-w
  49. Li MR, 2021, MOL PSYCHIATR, V26, P4475, DOI 10.1038/s41380-020-00968-0
  50. Li M, 2020, TRANSL PSYCHIAT, V10, DOI 10.1038/s41398-020-0708-y
  51. Liu JY, 2014, SCHIZOPHRENIA BULL, V40, P769, DOI 10.1093/schbul/sbt080
  52. Liu ZH, 2022, J AM STAT ASSOC, V117, P67, DOI 10.1080/01621459.2021.1914634
  53. Lopez-Lengowski K, 2021, JOVE-J VIS EXP, DOI 10.3791/62480
  54. Mallett R, 2002, SOC PSYCH PSYCH EPID, V37, P329, DOI 10.1007/s00127-002-0557-4
  55. Assuncao SSM, 2006, REV BRAS PSIQUIATR, V28, P270, DOI 10.1590/S1516-44462006000700005
  56. Marzi SJ, 2018, AM J PSYCHIAT
  57. Mazza MG, 2020, WORLD J BIOL PSYCHIA, V21, P326, DOI 10.1080/15622975.2019.1583371
  58. MCGUFFIN P, 1991, ARCH GEN PSYCHIAT, V48, P764
  59. Meskanen K, 2013, J CLIN PSYCHOPHARM, V33, P472, DOI 10.1097/JCP.0b013e3182970490
  60. Millar MW, 2018, FRONT ONCOL, V8, DOI 10.3389/fonc.2018.00008
  61. Mobarakeh JI, 2006, NEUROPHARMACOLOGY, V51, P612, DOI 10.1016/j.neuropharm.2006.05.003
  62. Monette J, 1997, J CLIN GASTROENTEROL, V24, P207, DOI 10.1097/00004836-199706000-00005
  63. Monin A, 2015, MOL PSYCHIATR, V20, P827, DOI 10.1038/mp.2014.88
  64. Montano C, 2016, JAMA PSYCHIAT, V73, P506, DOI 10.1001/jamapsychiatry.2016.0144
  65. Ogawa S, 2009, BRAIN RES BULL, V78, P189, DOI 10.1016/j.brainresbull.2008.10.016
  66. Olaniru OE, 2018, CELL MOL LIFE SCI, V75, P4007, DOI 10.1007/s00018-018-2846-4
  67. Orange PR, 1996, NEUROREPORT, V7, P1293, DOI 10.1097/00001756-199605170-00015
  68. Orange PR, 1996, MOL PSYCHIATR, V1, P466
  69. Perroud N, 2011, TRANSL PSYCHIAT, V1, DOI 10.1038/tp.2011.60
  70. Phipson B, 2016, BIOINFORMATICS, V32, P286, DOI 10.1093/bioinformatics/btv560
  71. Pidsley R, 2014, GENOME BIOL, V15, DOI 10.1186/s13059-014-0483-2
  72. Pidsley R, 2013, BMC GENOMICS, V14, DOI 10.1186/1471-2164-14-293
  73. Plooster M, 2021, J NEUROSCI, V41, P9466, DOI 10.1523/JNEUROSCI.0556-21.2021
  74. Poyurovsky M, 2004, EUR NEUROPSYCHOPHARM, V14, P332
  75. Prados J, 2015, GENES BRAIN BEHAV, V14, P177, DOI 10.1111/gbb.12197
  76. Quattrone D, 2019, PSYCHOL MED, V49, P1378, DOI 10.1017/S0033291718002131
  77. RAZIN A, 1991, MICROBIOL REV, V55, P451, DOI 10.1128/MMBR.55.3.451-458.1991
  78. Rodriguez V, 2021, FRONT PSYCHIATRY, V12, DOI 10.3389/fpsyt.2021.596949
  79. Ruby Eugene, 2014, Front Psychol Behav Sci, V3, P1
  80. Sammallahti S, 2021, MOL PSYCHIATR, V26, P1832, DOI 10.1038/s41380-020-00976-0
  81. Schrode N, 2019, NAT GENET, V51, P1475, DOI 10.1038/s41588-019-0497-5
  82. Sleiman P, 2013, SCI REP-UK, V3, DOI 10.1038/srep03075
  83. Sobel M.E., 1982, Sociological methodology, V13, P290, DOI [10.2307/270723, DOI 10.2307/270723]
  84. Spencer K, 2013, PRENATAL DIAG, V33, P245, DOI 10.1002/pd.4053
  85. Tavares R, 2017, J PROTEOMICS, V151, P293, DOI 10.1016/j.jprot.2016.05.023
  86. Turner S., 2018, J OPEN SOURCE SOFTW, V3, P731, DOI [DOI 10.1101/005165, DOI 10.21105/JOSS.00731, 10.1101/005165]
  87. Uddin M, 2010, P NATL ACAD SCI USA, V107, P9470, DOI 10.1073/pnas.0910794107
  88. Unnikrishnan A, 2019, PHARMACOL THERAPEUT, V195, P172, DOI 10.1016/j.pharmthera.2018.11.001
  89. Varese F, 2012, SCHIZOPHRENIA BULL, V38, P661, DOI 10.1093/schbul/sbs050
  90. Yang BZ, 2013, AM J PREV MED, V44, P101, DOI 10.1016/j.amepre.2012.10.012
  91. Zhang LY, 2020, NAT COMMUN, V11, DOI 10.1038/s41467-020-19791-w
  92. Zhu LL, 2019, NAT CELL BIOL, V21, P1604, DOI 10.1038/s41556-019-0429-8
  93. Zou DH, 2020, BIOMED RES INT, V2020, DOI 10.1155/2020/8047146