Diaphragmatic hernia repair porcine model to compare the performance of biodegradable membranes against Gore-Tex®

Carregando...
Imagem de Miniatura
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER
Autores
SCUGLIA, Marianna
FRAZAO, Laura P.
MIRANDA, Alice
MARTINS, Albino
BARBOSA-SEQUEIRA, Joana
COIMBRA, Diana
REIS, Rui L.
NOGUEIRA-SILVA, Cristina
NEVES, Nuno M.
Citação
PEDIATRIC SURGERY INTERNATIONAL, v.40, n.1, article ID 7, 12p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Background: Patch repair of congenital diaphragmatic hernia (CDH) using Gore-Tex (R) is associated with infection, adhesions, hernia recurrence, long-term musculoskeletal sequels and poor tissue regeneration. To overcome these limitations, the performance of two novel biodegradable membranes was tested to repair CDH in a growing pig model.Methods: Twelve male pigs were randomly assigned to 3 different groups of 4 animals each, determined by the type of patch used during thoracoscopic diaphragmatic hernia repair (Gore-Tex (R), polycaprolactone electrospun membrane-PCLem, and decellularized human chorion membrane-dHCM). After 7 weeks, all animals were euthanized, followed by necropsy for diaphragmatic evaluation and histological analysis.Results: Thoracoscopic defect creation and diaphragmatic repair were performed without any technical difficulty in all groups. However, hernia recurrence rate was 0% in Gore-Tex (R), 50% in PCLem and 100% in dHCM groups. At euthanasia, Gore-Tex (R) patches appeared virtually unchanged and covered with a fibrotic capsule, while PCLem and dHCM patches were replaced by either floppy connective tissue or vascularized and floppy regenerated membranous tissue, respectively.Conclusion: Gore-Tex (R) was associated with a higher survival rate and lower recurrence. Nevertheless, the proposed biodegradable membranes were associated with better tissue integration when compared with Gore-Tex (R).
Palavras-chave
Gore-Tex (R), Electrospun fibrous mesh, Decellularized human chorion membrane, Congenital diaphragmatic hernia repair, Thoracoscopic surgery
Referências
  1. Aikawa M, 2013, SURG TODAY, V43, P1298, DOI 10.1007/s00595-012-0414-3
  2. Anderson JM, 2008, SEMIN IMMUNOL, V20, P86, DOI 10.1016/j.smim.2007.11.004
  3. Araujo JV, 2008, J BIOMAT SCI-POLYM E, V19, P1261, DOI 10.1163/156856208786052335
  4. Arung W, 2011, WORLD J GASTROENTERO, V17, P4545, DOI 10.3748/wjg.v17.i41.4545
  5. Badylak SE, 2002, SEMIN CELL DEV BIOL, V13, P377, DOI 10.1016/S1084952102000940
  6. Badylak SF, 2007, BIOMATERIALS, V28, P3587, DOI 10.1016/j.biomaterials.2007.04.043
  7. Barroso C, 2018, EUR J PEDIATR SURG, V28, P141, DOI 10.1055/s-0038-1632374
  8. Bekdash Basil, 2009, J Med Case Rep, V3, P7237, DOI 10.1186/1752-1947-3-7237
  9. Brouwer KM, 2013, J TISSUE ENG REGEN M, V7, P552, DOI 10.1002/term.549
  10. Casanova MR, 2020, BIOMATER SCI-UK, V8, P2577, DOI 10.1039/d0bm00087f
  11. Costerus S, 2016, SURG ENDOSC, V30, P2818, DOI 10.1007/s00464-015-4560-8
  12. da Silva MA, 2017, BIOTECHNOL J, V12, DOI 10.1002/biot.201700073
  13. Davari HR, 2016, INTERACT CARDIOV TH, V23, P623, DOI 10.1093/icvts/ivw132
  14. Eastwood MP, 2018, J TISSUE ENG REGEN M, V12, P2138, DOI 10.1002/term.2734
  15. Fauza DO, 2001, J PEDIATR SURG, V36, P146, DOI 10.1053/jpsu.2001.20034
  16. Fonsatti Ester, 2004, J Transl Med, V2, P18, DOI 10.1186/1479-5876-2-18
  17. Frazao LP, 2020, BIOMOLECULES, V10, DOI 10.3390/biom10091208
  18. Frazao LP, 2020, METHOD CELL BIOL, V157, P23, DOI 10.1016/bs.mcb.2019.11.002
  19. Fuchs JR, 2004, J PEDIATR SURG, V39, P834, DOI 10.1016/j.jpedsurg.2004.02.014
  20. Fuchs JR, 2003, J PEDIATR SURG, V38, P1348, DOI 10.1016/S0022-3468(03)00394-4
  21. Gonzalez R, 2011, J LAPAROENDOSC ADV S, V21, P449, DOI 10.1089/lap.2010.0409
  22. Gubareva EA, 2016, BIOMATERIALS, V77, P320, DOI 10.1016/j.biomaterials.2015.11.020
  23. Jancelewicz T, 2013, J PEDIATR SURG, V48, P321, DOI 10.1016/j.jpedsurg.2012.11.012
  24. Kunisaki SM, 2006, J PEDIATR SURG, V41, P34, DOI 10.1016/j.jpedsurg.2005.10.011
  25. Lally KP, 2013, J PEDIATR SURG, V48, P2408, DOI 10.1016/j.jpedsurg.2013.08.014
  26. Liao GP, 2017, STEM CELLS INT, V2017, DOI 10.1155/2017/1764523
  27. Liu MF, 1999, J ANIM SCI, V77, P1693
  28. Martins A, 2008, INT MATER REV, V53, P257, DOI 10.1179/174328008X353547
  29. Mayer S, 2015, PLOS ONE, V10, DOI 10.1371/journal.pone.0132021
  30. Mitchell IC, 2008, J PEDIATR SURG, V43, P2161, DOI 10.1016/j.jpedsurg.2008.08.040
  31. Morini F, 2013, J PEDIATR SURG, V48, P1177, DOI 10.1016/j.jpedsurg.2013.03.011
  32. Moss RL, 2001, J PEDIATR SURG, V36, P152
  33. Nassiri F, 2011, ANTICANCER RES, V31, P2283
  34. Putnam LR, 2017, J PEDIATR SURG, V52, P928, DOI 10.1016/j.jpedsurg.2017.03.011
  35. Putnam LR, 2017, J AM COLL SURGEONS, V224, P416, DOI 10.1016/j.jamcollsurg.2016.12.050
  36. Saxena AK, 2018, PEDIATR SURG INT, V34, P475, DOI 10.1007/s00383-018-4253-1
  37. Schlager A, 2017, J LAPAROENDOSC ADV S, V27, P311, DOI 10.1089/lap.2016.0233
  38. Sheikh Z, 2015, MATERIALS, V8, P5671, DOI 10.3390/ma8095269
  39. SIMMERMACHER RKJ, 1994, J AM COLL SURGEONS, V178, P613
  40. Smith MJ, 2004, PEDIATR SURG INT, V20, P859, DOI 10.1007/s00383-004-1298-0
  41. Suzuki K, 2018, J PEDIATR SURG, V53, P330, DOI 10.1016/j.jpedsurg.2017.11.035
  42. Terui K, 2015, PEDIATR SURG INT, V31, P891, DOI 10.1007/s00383-015-3765-1
  43. Turdean SG, 2017, J INVEST MED, V65, P363, DOI 10.1136/jim-2016-000244
  44. Urita Y, 2008, PEDIATR SURG INT, V24, P1041, DOI 10.1007/s00383-008-2212-y
  45. Vanamo K, 1996, J PEDIATR SURG, V31, P851, DOI 10.1016/S0022-3468(96)90152-9
  46. VANDERLEI B, 1989, BRIT J SURG, V76, P803, DOI 10.1002/bjs.1800760813
  47. Wang LC, 2015, J PEDIAT SURG CASE R, V3, P377, DOI 10.1016/j.epsc.2015.07.001
  48. Zani A, 2022, NAT REV DIS PRIMERS, V8, DOI 10.1038/s41572-022-00362-w
  49. Zhao WX, 2013, BIOMATERIALS, V34, P8235, DOI 10.1016/j.biomaterials.2013.07.057