Integrated control strategies for dengue, Zika, and Chikungunya virus infections

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
CORTES, Nelson
LIRA, Aline
PRATES-SYED, Wasim
SILVA, Jaqueline Dinis
VUITIKA, Larissa
CABRAL-MIRANDA, William
DURAES-CARVALHO, Ricardo
BALAN, Andrea
CABRAL-MIRANDA, Gustavo
Citação
FRONTIERS IN IMMUNOLOGY, v.14, article ID 1281667, 13p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
Arboviruses are a major threat to public health in tropical regions, encompassing over 534 distinct species, with 134 capable of causing diseases in humans. These viruses are transmitted through arthropod vectors that cause symptoms such as fever, headache, joint pains, and rash, in addition to more serious cases that can lead to death. Among the arboviruses, dengue virus stands out as the most prevalent, annually affecting approximately 16.2 million individuals solely in the Americas. Furthermore, the re-emergence of the Zika virus and the recurrent outbreaks of chikungunya in Africa, Asia, Europe, and the Americas, with one million cases reported annually, underscore the urgency of addressing this public health challenge. In this manuscript we discuss the epidemiology, viral structure, pathogenicity and integrated control strategies to combat arboviruses, and the most used tools, such as vaccines, monoclonal antibodies, treatment, etc., in addition to presenting future perspectives for the control of arboviruses. Currently, specific medications for treating arbovirus infections are lacking, and symptom management remains the primary approach. However, promising advancements have been made in certain treatments, such as Chloroquine, Niclosamide, and Isatin derivatives, which have demonstrated notable antiviral properties against these arboviruses in vitro and in vivo experiments. Additionally, various strategies within vector control approaches have shown significant promise in reducing arbovirus transmission rates. These encompass public education initiatives, targeted insecticide applications, and innovative approaches like manipulating mosquito bacterial symbionts, such as Wolbachia. In conclusion, combatting the global threat of arbovirus diseases needs a comprehensive approach integrating antiviral research, vaccination, and vector control. The continued efforts of research communities, alongside collaborative partnerships with public health authorities, are imperative to effectively address and mitigate the impact of these arboviral infections on public health worldwide.
Palavras-chave
arboviruses, tropical regions, climate change, dengue virus, Zika virus, Chikungunya virus, strategies control, public health
Referências
  1. Administration F.-U.F.a.D, 2019, First FDA-approved vaccine for the prevention of dengue disease in endemic regions
  2. AHOLA T, 1995, P NATL ACAD SCI USA, V92, P507, DOI 10.1073/pnas.92.2.507
  3. Akahata W, 2010, NAT MED, V16, P334, DOI 10.1038/nm.2105
  4. Aliota MT, 2016, SCI REP-UK, V6, DOI 10.1038/srep28792
  5. [Anonymous], 2016, Wkly Epidemiol Rec, V91, P349
  6. [Anonymous], The Victorian Arbovirus Disease Control Program
  7. [Anonymous], Diario Oficial da Uniao, B., DF
  8. Avirutnan P, 2010, J EXP MED, V207, P793, DOI 10.1084/jem.20092545
  9. Barba-Spaeth G, 2016, NATURE, V536, P48, DOI 10.1038/nature18938
  10. Batovska J, 2022, VIRUSES-BASEL, V14, DOI 10.3390/v14122759
  11. Baud D, 2017, LANCET, V390, P2099, DOI [10.1016/S0140-6736(17)31450-2, 10.1016/s0140-6736(17)31450-2]
  12. Baxter VK, 2020, ADV VIRUS RES, V107, P315, DOI 10.1016/bs.aivir.2020.06.002
  13. Biswal S, 2020, LANCET, V395, P1423, DOI 10.1016/S0140-6736(20)30414-1
  14. Biswal S, 2019, NEW ENGL J MED, V381, P2009, DOI 10.1056/NEJMoa1903869
  15. Bournazos S, 2021, SCIENCE, V372, P1102, DOI 10.1126/science.abc7303
  16. Braack L, 2018, PARASITE VECTOR, V11, DOI 10.1186/s13071-017-2559-9
  17. Brady OJ, 2012, PLOS NEGLECT TROP D, V6, DOI 10.1371/journal.pntd.0001760
  18. Briant L, 2014, VIROLOGY, V464, P26, DOI 10.1016/j.virol.2014.06.023
  19. Brown RS, 2018, VIRUSES-BASEL, V10, DOI 10.3390/v10020089
  20. Bullard-Feibelman KM, 2017, ANTIVIR RES, V137, P134, DOI 10.1016/j.antiviral.2016.11.023
  21. Burt FJ, 2017, LANCET INFECT DIS, V17, pE107, DOI 10.1016/S1473-3099(16)30385-1
  22. Callaway E, 2016, NATURE, V539, P17, DOI 10.1038/nature.2016.20878
  23. Caragata EP, 2016, MICROB CELL, V3, P293, DOI 10.15698/mic2016.07.513
  24. CARDOSA MJ, 1983, J EXP MED, V158, P258, DOI 10.1084/jem.158.1.258
  25. Carey BD, 2019, ANTIVIR RES, V163, P125, DOI 10.1016/j.antiviral.2019.01.015
  26. Dutra HLC, 2016, CELL HOST MICROBE, V19, P771, DOI 10.1016/j.chom.2016.04.021
  27. Casey RM, 2019, NEW ENGL J MED, V381, P444, DOI 10.1056/NEJMoa1710430
  28. Chareonsirisuthigul T, 2007, J GEN VIROL, V88, P365, DOI 10.1099/vir.0.82537-0
  29. Chen JC, 2015, PLOS PATHOG, V11, DOI 10.1371/journal.ppat.1005053
  30. Chevillon C, 2008, TRENDS MICROBIOL, V16, P80, DOI 10.1016/j.tim.2007.12.003
  31. Chong HY, 2019, VIRUS RES, V274, DOI 10.1016/j.virusres.2019.197770
  32. Collins MH, 2017, EMERG INFECT DIS, V23, P773, DOI 10.3201/eid2305.161630
  33. Cordero-Rivera CD, 2021, CURR OPIN VIROL, V49, P164, DOI 10.1016/j.coviro.2021.05.001
  34. Couderc T, 2009, J INFECT DIS, V200, P516, DOI 10.1086/600381
  35. Dai LP, 2016, CELL HOST MICROBE, V19, P696, DOI 10.1016/j.chom.2016.04.013
  36. de Araujo TVB, 2016, LANCET INFECT DIS, V16, P1356, DOI 10.1016/S1473-3099(16)30318-8
  37. De Lamballerie X, 2008, VECTOR-BORNE ZOONOT, V8, P837, DOI 10.1089/vbz.2008.0049
  38. De S, 2022, ANTIMICROB AGENTS CH, V66, DOI 10.1128/aac.00463-22
  39. Dejnirattisai W, 2010, SCIENCE, V328, P745, DOI 10.1126/science.1185181
  40. DICK GWA, 1952, T ROY SOC TROP MED H, V46, P509, DOI 10.1016/0035-9203(52)90042-4
  41. Ding SW, 2007, CELL, V130, P413, DOI 10.1016/j.cell.2007.07.039
  42. Edupuganti S, 2017, OPEN FORUM INFECT DI, V4, DOI 10.1093/ofid/ofx133
  43. Erasmus JH, 2016, J INFECT DIS, V214, pS488, DOI 10.1093/infdis/jiw271
  44. Ermann J, 2007, INT J CLIN PRACT, V61, P2113, DOI 10.1111/j.1742-1241.2007.01528.x
  45. European Medicines Agency, 2018, Dengvaxia vaccine approved for prevention of dengue in Europe
  46. Faye O, 2008, J CLIN VIROL, V43, P96, DOI 10.1016/j.jcv.2008.05.005
  47. Franz AWE, 2014, PLOS NEGLECT TROP D, V8, DOI 10.1371/journal.pntd.0002833
  48. Frentiu FD, 2010, PLOS ONE, V5, DOI 10.1371/journal.pone.0013398
  49. Fros JJ, 2016, VIRUSES-BASEL, V8, DOI 10.3390/v8060166
  50. Gardner J, 2010, J VIROL, V84, P8021, DOI 10.1128/JVI.02603-09
  51. Gatherer D, 2016, J GEN VIROL, V97, P269, DOI 10.1099/jgv.0.000381
  52. Gourinat AC, 2015, EMERG INFECT DIS, V21, P84, DOI 10.3201/eid2101.140894
  53. Gubler DJ, 2001, ANN NY ACAD SCI, V951, P13
  54. Gubler
  55. JD., 2007, Flaviviruses
  56. Field's Virology, V1, P1153
  57. HALSTEAD SB, 1970, YALE J BIOL MED, V42, P350
  58. Hamer DH, 2017, CURR INFECT DIS REP, V19, DOI 10.1007/s11908-017-0571-z
  59. Hills SL, 2016, MMWR-MORBID MORTAL W, V65, P215, DOI 10.15585/mmwr.mm6508e2
  60. Hiroki CH, 2020, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.03108
  61. Holmes AC, 2020, PLOS PATHOG, V16, DOI 10.1371/journal.ppat.1008876
  62. HOTTA S, 1952, J INFECT DIS, V90, P1, DOI 10.1093/infdis/90.1.1
  63. Jose J, 2009, FUTURE MICROBIOL, V4, P837, DOI [10.2217/fmb.09.59, 10.2217/FMB.09.59]
  64. Kao JC, 2018, PLOS NEGLECT TROP D, V12, DOI 10.1371/journal.pntd.0006715
  65. KARABATSOS N, 1978, AM J TROP MED HYG, V27, P372
  66. Katzelnick LC, 2017, SCIENCE, V358, P929, DOI 10.1126/science.aan6836
  67. Khan M, 2010, J MED VIROL, V82, P817, DOI 10.1002/jmv.21663
  68. Kleiboeker Steven B., 2001, Animal Health Research Reviews, V2, P121
  69. Kostyuchenko VA, 2016, NATURE, V533, P425, DOI 10.1038/nature17994
  70. Kraemer MUG, 2019, NAT MICROBIOL, V4, P854, DOI 10.1038/s41564-019-0376-y
  71. Laureti M, 2018, FRONT IMMUNOL, V9, DOI 10.3389/fimmu.2018.02180
  72. Li ZH, 2021, PLOS NEGLECT TROP D, V15, DOI 10.1371/journal.pntd.0009337
  73. LITTAUA R, 1990, J IMMUNOL, V144, P3183
  74. Liu T, 2018, DEV COMP IMMUNOL, V83, P34, DOI 10.1016/j.dci.2017.12.025
  75. Lopes N., 2014, REV PAN-AMAZ SAUDE, V5, P10, DOI 10.5123/S2176-62232014000300007
  76. Makhluf H, 2015, CRIT REV IMMUNOL, V35, P253, DOI 10.1615/CritRevImmunol.2015014251
  77. Mamane Y, 1999, GENE, V237, P1, DOI 10.1016/S0378-1119(99)00262-0
  78. Matusali G, 2019, VIRUSES-BASEL, V11, DOI 10.3390/v11020175
  79. McArthur MA, 2017, VIRUSES-BASEL, V9, DOI 10.3390/v9060143
  80. Messina JP, 2014, TRENDS MICROBIOL, V22, P138, DOI 10.1016/j.tim.2013.12.011
  81. Minhas AM, 2017, CUREUS J MED SCIENCE, V9, DOI 10.7759/cureus.1399
  82. Mishra P, 2016, SCI REP-UK, V6, DOI 10.1038/srep20122
  83. Modhiran N, 2015, SCI TRANSL MED, V7, DOI 10.1126/scitranslmed.aaa3863
  84. Monash Universit, World Mosquito Program
  85. Montoya M, 2018, J INFECT DIS, V218, P536, DOI 10.1093/infdis/jiy164
  86. Figueiredo LTM, 2007, REV SOC BRAS MED TRO, V40, P224, DOI 10.1590/S0037-86822007000200016
  87. Figueiredo LTM, 2019, FRONT CELL INFECT MI, V9, DOI 10.3389/fcimb.2019.00259
  88. Mukhopadhyay S, 2005, NAT REV MICROBIOL, V3, P13, DOI 10.1038/nrmicro1067
  89. Musso D, 2016, CLIN MICROBIOL REV, V29, P487, DOI 10.1128/CMR.00072-15
  90. Mustafa M S, 2015, Med J Armed Forces India, V71, P67, DOI 10.1016/j.mjafi.2014.09.011
  91. Ozden S, 2007, PLOS ONE, V2, DOI 10.1371/journal.pone.0000527
  92. PAHO, 2022, Pan American Health Organization (PAHO) World Health Organization (WHO) Actualizacion epidemiologica semanal para dengue, chikunguna y zika en
  93. Paixao ES, 2018, T ROY SOC TROP MED H, V112, P301, DOI 10.1093/trstmh/try063
  94. Pang XJ, 2017, VIROL SIN, V32, P16, DOI 10.1007/s12250-016-3855-9
  95. PERANEN J, 1990, J VIROL, V64, P1888
  96. Plourde AR, 2016, EMERG INFECT DIS, V22, P1185, DOI 10.3201/eid2207.151990
  97. Powers AM, 2007, J GEN VIROL, V88, P2363, DOI 10.1099/vir.0.82858-0
  98. Puerta-Guardo H, 2019, CELL REP, V26, P1598, DOI 10.1016/j.celrep.2019.01.036
  99. Puschnik A, 2013, PLOS NEGLECT TROP D, V7, DOI 10.1371/journal.pntd.0002274
  100. Reddy V, 2014, J MED VIROL, V86, P1393, DOI 10.1002/jmv.23875
  101. Retallack H, 2016, P NATL ACAD SCI USA, V113, P14408, DOI 10.1073/pnas.1618029113
  102. Reuters, Philippines says anti-dengue vaccine may be connected to three deaths
  103. Rezza G, 2007, LANCET, V370, P1840, DOI 10.1016/S0140-6736(07)61779-6
  104. Richner JM, 2017, CELL, V169, P176, DOI 10.1016/j.cell.2017.03.016
  105. RIKKONEN M, 1994, J VIROL, V68, P5804, DOI 10.1128/JVI.68.9.5804-5810.1994
  106. Rohatgi A, 2014, J VIROL, V88, P2414, DOI 10.1128/JVI.02716-13
  107. ROSS R. W., 1956, JOUR HYG, V54, P177
  108. Rudd PA, 2012, J VIROL, V86, P9888, DOI 10.1128/JVI.00956-12
  109. Rupp JC, 2015, J GEN VIROL, V96, P2483, DOI 10.1099/jgv.0.000249
  110. Ryman KD, 2008, IMMUNOL REV, V225, P27, DOI 10.1111/j.1600-065X.2008.00670.x
  111. SABIN AB, 1945, SCIENCE, V101, P640, DOI 10.1126/science.101.2634.640
  112. Sáez-Llorens X, 2017, LANCET INFECT DIS, V17, P615, DOI 10.1016/S1473-3099(17)30166-4
  113. Salje H, 2018, NATURE, V557, P719, DOI 10.1038/s41586-018-0157-4
  114. Schatzmayr H G, 2001, Cad Saude Publica, V17 Suppl, P209, DOI 10.1590/S0102-311X2001000700031
  115. Schnierle BS, 2019, VIRUSES-BASEL, V11, DOI 10.3390/v11111078
  116. Schoggins JW, 2011, CURR OPIN VIROL, V1, P519, DOI 10.1016/j.coviro.2011.10.008
  117. Schrieke H, 2022, COMPUT STRUCT BIOTEC, V20, P410, DOI 10.1016/j.csbj.2021.12.019
  118. Schuffenecker I, 2006, PLOS MED, V3, P1058, DOI 10.1371/journal.pmed.0030263
  119. Schwartz O, 2010, NAT REV MICROBIOL, V8, P491, DOI 10.1038/nrmicro2368
  120. Screaton G, 2015, NAT REV IMMUNOL, V15, P745, DOI 10.1038/nri3916
  121. Sheehan G, 2018, VIRULENCE, V9, P1625, DOI 10.1080/21505594.2018.1526531
  122. Sidwell RW, 2003, ANTIVIR RES, V57, P101, DOI 10.1016/S0166-3542(02)00203-6
  123. Silva LA, 2017, J CLIN INVEST, V127, P737, DOI 10.1172/JCI84417
  124. Sirohi D, 2017, J INFECT DIS, V216, pS935, DOI 10.1093/infdis/jix515
  125. SMEE DF, 1988, ANTIVIR RES, V10, P253, DOI 10.1016/0166-3542(88)90044-7
  126. Stiasny Karin, 2006, Novartis Found Symp, V277, P57, DOI 10.1002/0470058005.ch5
  127. Suhrbier A, 2012, NAT REV RHEUMATOL, V8, P420, DOI 10.1038/nrrheum.2012.64
  128. Tafesh-Edwards G, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.903860
  129. Nunes MRT, 2015, BMC MED, V13, DOI 10.1186/s12916-015-0348-x
  130. Teng TS, 2015, J INFECT DIS, V211, P1925, DOI 10.1093/infdis/jiv049
  131. Thomas SJ., 2007, Viral Infections Of Humans: Epidemiology and Control, VFifith edition
  132. Thulin NK, 2020, CELL REP, V31, DOI 10.1016/j.celrep.2020.107642
  133. Thurmond S, 2018, VIRUSES-BASEL, V10, DOI 10.3390/v10120712
  134. Tomar S, 2006, J VIROL, V80, P9962, DOI 10.1128/JVI.01067-06
  135. Vairo F, 2019, INFECT DIS CLIN N AM, V33, P1003, DOI 10.1016/j.idc.2019.08.006
  136. Vázquez-Calvo A, 2017, FRONT MICROBIOL, V8, DOI 10.3389/fmicb.2017.01314
  137. Venter M, 2018, CURR OPIN VIROL, V28, P74, DOI 10.1016/j.coviro.2017.11.004
  138. Villar L, 2015, NEW ENGL J MED, V372, P113, DOI 10.1056/NEJMoa1411037
  139. Vo HTM, 2022, SCI REP-UK, V12, DOI 10.1038/s41598-022-21722-2
  140. Volk SM, 2010, J VIROL, V84, P6497, DOI 10.1128/JVI.01603-09
  141. Vorou RM, 2007, EPIDEMIOL INFECT, V135, P1231, DOI 10.1017/S0950268807008527
  142. Wang YM, 2016, ANTIVIR RES, V135, P81, DOI 10.1016/j.antiviral.2016.10.003
  143. Weaver SC, 2018, ANNU REV MED, V69, P395, DOI 10.1146/annurev-med-050715-105122
  144. Weaver SC, 2015, NEW ENGL J MED, V372, P1231, DOI 10.1056/NEJMra1406035
  145. Weber C, 2015, ANTIVIR RES, V113, P1, DOI 10.1016/j.antiviral.2014.11.001
  146. Werren JH, 1997, ANNU REV ENTOMOL, V42, P587, DOI 10.1146/annurev.ento.42.1.587
  147. WHO. World Health Organization, A report about health. Chikungunya
  148. Wong JM, 2022, PEDIATRICS, V149, DOI 10.1542/peds.2021-055522
  149. Wong KZ, 2018, VIRUSES-BASEL, V10, DOI 10.3390/v10060294
  150. Wu M, 2004, PLOS BIOL, V2, P327, DOI 10.1371/journal.pbio.0020069
  151. Xu MH, 2017, NPJ VACCINES, V2, DOI 10.1038/s41541-016-0003-3
  152. Ye Q, 2016, INFECT GENET EVOL, V43, P43, DOI 10.1016/j.meegid.2016.05.004
  153. Young PR, 2018, ADV EXP MED BIOL, V1062, P1, DOI 10.1007/978-981-10-8727-1_1
  154. Zeng T, 2022, INT J MOL SCI, V23, DOI 10.3390/ijms232315132
  155. Zhang W, 2017, J GEN VIROL, V98, P2413, DOI 10.1099/jgv.0.000908
  156. Zhang Y, 2004, STRUCTURE, V12, P1607, DOI 10.1016/j.str.2004.06.019
  157. Zou B, 2015, ACS MED CHEM LETT, V6, P344, DOI 10.1021/ml500521r