Mutations in <i>PTPN11</i> could lead to a congenital myasthenic syndrome phenotype: a Noonan syndrome case series

Nenhuma Miniatura disponível
Citações na Scopus
0
Tipo de produção
article
Data de publicação
2024
Título da Revista
ISSN da Revista
Título do Volume
Editora
SPRINGER HEIDELBERG
Autores
PUGLIESE, Alessia
MARINA, Adela Della
ROOS, Andreas
SCHARA-SCHMIDT, Ulrike
HENTSCHEL, Andreas
AZUMA, Yoshiteru
TOPF, Ana
THOMPSON, Rachel
Citação
JOURNAL OF NEUROLOGY, v.271, n.3, p.1331-1341, 2024
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The RASopathies are a group of genetic rare diseases caused by mutations affecting genes involved in the RAS/MAPK (RAS-mitogen activated protein kinase) pathway. Among them, PTPN11 pathogenic variants are responsible for approximately 50% of Noonan syndrome (NS) cases and, albeit to a lesser extent, of Leopard syndrome (LPRD1), which present a few overlapping clinical features, such as facial dysmorphism, developmental delay, cardiac defects, and skeletal deformities. Motor impairment and decreased muscle strength have been recently reported. The etiology of the muscle involvement in these disorders is still not clear but probably multifactorial, considering the role of the RAS/MAPK pathway in skeletal muscle development and Acetylcholine Receptors (AChR) clustering at the neuromuscular junction (NMJ). We report, herein, four unrelated children carrying three different heterozygous mutations in the PTPN11 gene. Intriguingly, their phenotypic features first led to a clinical suspicion of congenital myasthenic syndrome (CMS), due to exercise-induced fatigability with a variable degree of muscle weakness, and serum proteomic profiling compatible with a NMJ defect. Moreover, muscle fatigue improved after treatment with CMS-specific medication. Although the link between PTPN11 gene and neuromuscular transmission is unconfirmed, an increasing number of patients with RASopathies are affected by muscle weakness and fatigability. Hence, NS or LPDR1 should be considered in children with suspected CMS but negative genetic workup for known CMS genes or additional symptoms indicative of NS, such as facial dysmorphism or intellectual disability.
Palavras-chave
RASopathies, Noonan syndrome, Leopard syndrome, PTPN11, Congenital myasthenic syndrome, Neuromuscular junction
Referências
  1. Arrandale JM, 1996, J BIOL CHEM, V271, P21353, DOI 10.1074/jbc.271.35.21353
  2. Askanas V, 2000, J NEUROPATH EXP NEUR, V59, P592, DOI 10.1093/jnen/59.7.592
  3. Athota JP, 2020, BMC MED GENET, V21, DOI 10.1186/s12881-020-0986-5
  4. Bertola DR, 2006, GENET TEST, V10, P186, DOI 10.1089/gte.2006.10.186
  5. BURCH M, 1993, J AM COLL CARDIOL, V22, P1189, DOI 10.1016/0735-1097(93)90436-5
  6. Burkhart JM, 2012, J PROTEOMICS, V75, P1454, DOI 10.1016/j.jprot.2011.11.016
  7. deBoode WP, 1996, ACTA NEUROPATHOL, V92, P597, DOI 10.1007/s004010050566
  8. Digilio MC, 2002, AM J HUM GENET, V71, P389, DOI 10.1086/341528
  9. Dulewicz M, 2021, J CLIN MED, V10, DOI 10.3390/jcm10194575
  10. Estephan EP, 2022, EUR J NEUROL, V29, P833, DOI 10.1111/ene.15173
  11. Gangfuss A, 2022, HUM MUTAT, V43, P477, DOI 10.1002/humu.24338
  12. Graf ER, 2011, J NEUROSCI, V31, P15026, DOI 10.1523/JNEUROSCI.2024-11.2011
  13. Hanna N, 2006, FEBS LETT, V580, P2477, DOI 10.1016/j.febslet.2006.03.088
  14. Hathazi D, 2021, BRAIN, V144, P2427, DOI 10.1093/brain/awab133
  15. Huda S, 2020, NEUROL-NEUROIMMUNOL, V7, DOI 10.1212/NXI.0000000000000645
  16. KEESEY JC, 1989, MUSCLE NERVE, V12, P613, DOI 10.1002/mus.880120802
  17. Keren B, 2004, J MED GENET, V41, DOI 10.1136/jmg.2004.021451
  18. Kleefstra T, 2011, EUR J HUM GENET, V19, P138, DOI 10.1038/ejhg.2010.171
  19. Kollipara L, 2017, ONCOTARGET, V8, P68493, DOI 10.18632/oncotarget.19663
  20. Kossler N, 2011, HUM MOL GENET, V20, P2697, DOI 10.1093/hmg/ddr149
  21. Laurie S, 2022, HUM MUTAT, V43, P717, DOI 10.1002/humu.24353
  22. Lee I, 2010, BBA-MOL BASIS DIS, V1802, P275, DOI 10.1016/j.bbadis.2009.10.005
  23. Lin IS, 2009, J FORMOS MED ASSOC, V108, P803, DOI 10.1016/S0929-6646(09)60408-3
  24. Linglart L, 2020, AM J MED GENET C, V184, P73, DOI 10.1002/ajmg.c.31765
  25. Martinelli S, 2008, HUM MOL GENET, V17, P2018, DOI 10.1093/hmg/ddn099
  26. Martinelli S, 2012, J BIOL CHEM, V287, P27066, DOI 10.1074/jbc.M112.350231
  27. McMacken G, 2018, HUM MOL GENET, V27, P1556, DOI 10.1093/hmg/ddy062
  28. MENDEZ HMM, 1985, AM J MED GENET, V21, P493, DOI 10.1002/ajmg.1320210312
  29. Musante L, 2003, EUR J HUM GENET, V11, P201, DOI 10.1038/sj.ejhg.5200935
  30. Neel BG, 2003, TRENDS BIOCHEM SCI, V28, P284, DOI 10.1016/S0968-0004(03)00091-4
  31. NOONAN JA, 1963, J PEDIATR-US, V63, P468
  32. Oishi K, 2009, HUM MOL GENET, V18, P193, DOI 10.1093/hmg/ddn336
  33. Papadopoulou A, 2012, EUR J PEDIATR, V171, P51, DOI 10.1007/s00431-011-1487-5
  34. Perkins LA, 1996, DEV BIOL, V180, P63, DOI 10.1006/dbio.1996.0285
  35. Qian YPK, 2008, BMC NEUROSCI, V9, DOI 10.1186/1471-2202-9-70
  36. Richards Sue, 2015, Genet Med, V17, P405, DOI 10.1038/gim.2015.30
  37. Romano AA, 2010, PEDIATRICS, V126, P746, DOI 10.1542/peds.2009-3207
  38. Roos A, 2018, PROTEOM CLIN APPL, V12, DOI 10.1002/prca.201700073
  39. Santoro C, 2014, BMC MED GENET, V15, DOI 10.1186/1471-2350-15-44
  40. Sarkozy A, 2008, ORPHANET J RARE DIS, V3, DOI 10.1186/1750-1172-3-13
  41. Saxton TM, 1997, EMBO J, V16, P2352, DOI 10.1093/emboj/16.9.2352
  42. Sinico M, 2011, PEDIATR DEVEL PATHOL, V14, P218, DOI 10.2350/09-06-0664-CR.1
  43. Spatola M, 2015, BMC NEUROL, V15, DOI 10.1186/s12883-015-0310-8
  44. Stam M, 2022, BRAIN COMMUN, V5, DOI 10.1093/braincomms/fcac324
  45. Stassou S, 2005, J PERINAT MED, V33, P179, DOI 10.1515/JPM.2005.034
  46. Stevenson DA, 2012, MUSCLE NERVE, V46, P394, DOI 10.1002/mus.23324
  47. Stevenson DA, 2011, AM J MED GENET C, V157C, P90, DOI 10.1002/ajmg.c.30296
  48. SUMMITT RL, 1965, J PEDIATR-US, V67, P936, DOI 10.1016/S0022-3476(65)81833-9
  49. TANG TL, 1995, CELL, V80, P473, DOI 10.1016/0092-8674(95)90498-0
  50. Tartaglia M, 2005, ANNU REV GENOM HUM G, V6, P45, DOI 10.1146/annurev.genom.6.080604.162305
  51. Tartaglia M, 2001, NAT GENET, V29, P465, DOI 10.1038/ng772
  52. Tartaglia M, 2002, AM J HUM GENET, V70, P1555, DOI 10.1086/340847
  53. Tartaglia M, 2011, BEST PRACT RES CL EN, V25, P161, DOI 10.1016/j.beem.2010.09.002
  54. Tidyman WE, 2011, AM J MED GENET C, V157C, P104, DOI 10.1002/ajmg.c.30298
  55. Turner AM, 2014, J PAEDIATR CHILD H, V50, pE14, DOI 10.1111/j.1440-1754.2010.01970.x
  56. Van Horn MR, 2017, J NEUROSCI, V37, P6277, DOI 10.1523/JNEUROSCI.3158-16.2017
  57. Villalón E, 2019, HUM MOL GENET, V28, P3742, DOI 10.1093/hmg/ddz188
  58. Writzl K, 2007, AM J MED GENET A, V143A, P2612, DOI 10.1002/ajmg.a.31991
  59. Yu ZH, 2014, BIOCHEMISTRY-US, V53, P4136, DOI 10.1021/bi5002695