Systematic review and meta-analysis of cell therapy for COVID-19: global clinical trial landscape, published safety/efficacy outcomes, cell product manufacturing and clinical delivery

Carregando...
Imagem de Miniatura
Citações na Scopus
10
Tipo de produção
article
Data de publicação
2023
Título da Revista
ISSN da Revista
Título do Volume
Editora
FRONTIERS MEDIA SA
Autores
COUTO, Pedro S.
AL-ARAWE, Nada
FILGUEIRAS, Igor S.
FONSECA, Dennyson L. M.
HINTERSEHER, Irene
CATAR, Rusan A.
CHINNADURAI, Raghavan
BERSENEV, Alexey
MOLL, Guido
Citação
FRONTIERS IN IMMUNOLOGY, v.14, article ID 1200180, 24p, 2023
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
During the pandemic of severe respiratory distress syndrome coronavirus 2 (SARS-CoV2), many novel therapeutic modalities to treat Coronavirus 2019 induced disease (COVID-19) were explored. This study summarizes 195 clinical trials of advanced cell therapies targeting COVID-19 that were registered over the two years between January 2020 to December 2021. In addition, this work also analyzed the cell manufacturing and clinical delivery experience of 26 trials that published their outcomes by July 2022. Our demographic analysis found the highest number of cell therapy trials for COVID-19 was in United States, China, and Iran (N=53, 43, and 19, respectively), with the highest number per capita in Israel, Spain, Iran, Australia, and Sweden (N=0.641, 0.232, 0,223, 0.194, and 0.192 trials per million inhabitants). The leading cell types were multipotent mesenchymal stromal/stem cells (MSCs), natural killer (NK) cells, and mononuclear cells (MNCs), accounting for 72%, 9%, and 6% of the studies, respectively. There were 24 published clinical trials that reported on infusions of MSCs. A pooled analysis of these MSC studies found that MSCs provide a relative risk reduction for all-cause COVID-19 mortality of RR=0.63 (95% CI 0.46 to 0.85). This result corroborates previously published smaller meta-analyses, which suggested that MSC therapy demonstrated a clinical benefit for COVID-19 patients. The sources of the MSCs used in these studies and their manufacturing and clinical delivery methods were remarkably heterogeneous, with some predominance of perinatal tissue-derived products. Our results highlight the important role that cell therapy products may play as an adjunct therapy in the management of COVID-19 and its related complications, as well as the importance of controlling key manufacturing parameters to ensure comparability between studies. Thus, we support ongoing calls for a global registry of clinical studies with MSC products that could better link cell product manufacturing and delivery methods to clinical outcomes. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the near future, preventing pathology through vaccination still remains the best protection to date. We conducted a systematic review and meta-analysis of advanced cell therapy clinical trials as potential novel treatment for COVID-19 (resulting from SARS-CoV-2 coronavirus infection), including analysis of the global clinical trial landscape, published safety/efficacy outcomes (RR/OR), and details on cell product manufacturing and clinical delivery. This study had a 2-year observation interval from start of January 2020 to end of December 2021, including a follow-up period until end of July to identify published outcomes, which covers the most vivid period of clinical trial activity, and is also the longest observation period studied until today. In total, we identified 195 registered advanced cell therapy studies for COVID-19, employing 204 individual cell products. Leading registered trial activity was attributed to the USA, China, and Iran. Through the end of July 2022, 26 clinical trials were published, with 24 out of 26 articles employing intravenous infusions (IV) of mesenchymal stromal/stem cell (MSC) products. Most of the published trials were attributed to China and Iran. The cumulative results from the 24 published studies employing infusions of MSCs indicated an improved survival (RR=0.63 with 95% Confidence Interval 0.46 to 0.85). Our study is the most comprehensive systematic review and meta-analysis on cell therapy trials for COVID-19 conducted to date, clearly identifying the USA, China, and Iran as leading advanced cell therapy trial countries for COVID-19, with further strong contributions from Israel, Spain, Australia and Sweden. Although advanced cell therapies may provide an important adjunct treatment for patients affected by COVID-19 in the future, preventing pathology through vaccination remains the best protection.
Palavras-chave
cell and gene therapy (CGT), advanced therapy medicinal products (ATMPs), mesenchymal stromal, stem cells (MSCs), severe respiratory distress syndrome coronavirus 2 (SARS-CoV2), coronavirus induced disease 2019 (COVID-19)
Referências
  1. Adas G, 2021, CELL TRANSPLANT, V30, DOI 10.1177/09636897211024942
  2. Aghayan HR, 2022, STEM CELL RES THER, V13, DOI 10.1186/s13287-022-02953-6
  3. Aijaz A, 2019, STEM CELL TRANSL MED, V8, P874, DOI 10.1002/sctm.19-0019
  4. Aijaz A, 2018, NAT BIOMED ENG, V2, P362, DOI 10.1038/s41551-018-0246-6
  5. Andrzejewska A, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.02474
  6. Ankrum JA, 2014, NAT BIOTECHNOL, V32, P252, DOI 10.1038/nbt.2816
  7. [Anonymous], 2022, OFF J EUR UN
  8. [Anonymous], REPAIR ACUTE RESP DI
  9. [Anonymous], MESENCHYMAL STROMAL
  10. Ayatollahi M, 2016, IRAN J BASIC MED SCI, V19, P145
  11. Babaei F, 2021, DRUG DEVELOP RES, V82, P474, DOI 10.1002/ddr.21762
  12. Golchin A, 2020, STEM CELL REV REP, V16, P427, DOI 10.1007/s12015-020-09973-w
  13. Goldsobel G, 2021, FRONT MED-LAUSANNE, V8, DOI 10.3389/fmed.2021.739987
  14. Gregoire C, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.932360
  15. Kehl D, 2019, NPJ REGEN MED, V4, DOI 10.1038/s41536-019-0070-y
  16. Grumet M, 2022, STEM CELL TRANSL MED, V11, P1103, DOI 10.1093/stcltm/szac067
  17. Guan YT, 2019, MOL MED REP, V20, P633, DOI 10.3892/mmr.2019.10286
  18. Häberle H, 2021, J INTENSIVE CARE MED, V36, P681, DOI 10.1177/0885066621997365
  19. Hashemian SMR, 2021, STEM CELL RES THER, V12, DOI 10.1186/s13287-021-02165-4
  20. Heo JS, 2016, INT J MOL MED, V37, P115, DOI 10.3892/ijmm.2015.2413
  21. Hoogduijn MJ, 2016, STEM CELLS DEV, V25, P586, DOI 10.1089/scd.2015.0329
  22. Oxley TJ, 2020, NEW ENGL J MED, V382, DOI 10.1056/NEJMc2009787
  23. Iglesias M, 2021, AGING DIS, V12, P360, DOI 10.14336/AD.2020.1218
  24. Ji HL, 2020, WORLD J STEM CELLS, V12, P471, DOI 10.4252/wjsc.v12.i6.471
  25. Jin HJ, 2013, INT J MOL SCI, V14, P17986, DOI 10.3390/ijms140917986
  26. Khoury M, 2021, STEM CELLS DEV, V30, P119, DOI 10.1089/scd.2020.0122
  27. Khoury M, 2020, EUR RESPIR J, V55, DOI 10.1183/13993003.00858-2020
  28. Kim M, 2021, REGEN MED, V16, P525, DOI 10.2217/rme-2021-0025
  29. Kirkham AM, 2022, STEM CELL TRANSL MED, V11, P675, DOI 10.1093/stcltm/szac038
  30. Klok FA, 2020, THROMB RES, V191, P145, DOI [10.1016/j.thromres.2020.04.013, 10.1016/j.thromres.2020.04.041]
  31. Rebelatto CLK, 2022, STEM CELL RES THER, V13, DOI 10.1186/s13287-022-02796-1
  32. Ren YA, 2019, J GEN INTERN MED, V34, P960, DOI 10.1007/s11606-019-04925-8
  33. Pérez-Martínez A, 2021, ECLINICALMEDICINE, V39, DOI 10.1016/j.eclinm.2021.101086
  34. Lanzoni G, 2021, STEM CELL TRANSL MED, V10, P660, DOI 10.1002/sctm.20-0472
  35. Leng ZK, 2020, AGING DIS, V11, P216, DOI 10.14336/AD.2020.0228
  36. Levy O, 2020, SCI ADV, V6, DOI 10.1126/sciadv.aba6884
  37. Li ZW, 2020, CELL PROLIFERAT, V53, DOI 10.1111/cpr.12939
  38. Liao G, 2020, TRANSFUS MED REV, V34, P165, DOI 10.1016/j.tmrv.2020.06.001
  39. Liu S, 2020, STEM CELL RES THER, V11, DOI 10.1186/s13287-020-01678-8
  40. Lu K, 2022, STEM CELL RES THER, V13, DOI 10.1186/s13287-022-02743-0
  41. Lythgoe MP, 2020, TRENDS PHARMACOL SCI, V41, P363, DOI 10.1016/j.tips.2020.03.006
  42. Magro C, 2020, TRANSL RES, V220, P1, DOI 10.1016/j.trsl.2020.04.007
  43. Mallapaty S, 2022, NATURE, V602, P26, DOI 10.1038/d41586-022-00215-2
  44. Petrenko Y, 2020, SCI REP-UK, V10, DOI 10.1038/s41598-020-61167-z
  45. Renesme L, 2021, BMJ OPEN, V11, DOI 10.1136/bmjopen-2021-054740
  46. MANTEL N, 1959, J NATL CANCER I, V22, P719
  47. Market M, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01512
  48. Mathieu E, 2021, NAT HUM BEHAV, V5, P947, DOI 10.1038/s41562-021-01122-8
  49. Meng FP, 2020, SIGNAL TRANSDUCT TAR, V5, DOI 10.1038/s41392-020-00286-5
  50. Moll G, 2015, ISBT SCI SER, V10, P357, DOI 10.1111/voxs.12133
  51. Moll G, 2022, STEM CELL TRANSL MED, V11, P2, DOI 10.1093/stcltm/szab005
  52. Moll G, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.01091
  53. Moll G, 2020, FRONT IMMUNOL, V11, DOI 10.3389/fimmu.2020.00243
  54. Moll G, 2019, TRENDS MOL MED, V25, P149, DOI 10.1016/j.molmed.2018.12.006
  55. Ringdén O, 2022, FRONT IMMUNOL, V13, DOI 10.3389/fimmu.2022.839844
  56. Moll G, 2016, ADV EXP MED BIOL, V951, P77, DOI 10.1007/978-3-319-45457-3_7
  57. Ribeiro A, 2013, STEM CELL RES THER, V4, DOI 10.1186/scrt336
  58. Moll G, 2015, STEM CELLS DEV, V24, P2269, DOI 10.1089/scd.2015.0120
  59. Moll G, 2014, STEM CELLS, V32, P2430, DOI 10.1002/stem.1729
  60. Moll G, 2014, PLOS ONE, V9, DOI 10.1371/journal.pone.0085040
  61. Moll G, 2012, STEM CELLS, V30, P1565, DOI 10.1002/stem.1111
  62. Monsel A, 2022, CRIT CARE, V26, DOI 10.1186/s13054-022-03930-4
  63. Najar M, 2010, TISSUE ENG PT A, V16, P3537, DOI [10.1089/ten.tea.2010.0159, 10.1089/ten.TEA.2010.0159]
  64. Ercelen NO, 2021, STEM CELL REV REP, V17, P1917, DOI 10.1007/s12015-021-10214-x
  65. Phua J, 2009, AM J RESP CRIT CARE, V179, P220, DOI 10.1164/rccm.200805-722OC
  66. Piret J, 2021, FRONT MICROBIOL, V11, DOI 10.3389/fmicb.2020.631736
  67. Pittenger MF, 2019, NPJ REGEN MED, V4, DOI 10.1038/s41536-019-0083-6
  68. Prado CAD, 2023, J MED VIROL, V95, DOI 10.1002/jmv.28450
  69. Prasanna SJ, 2010, PLOS ONE, V5, DOI [10.1371/journal.pone.0009016, 10.1371/journal.pone.0014189]
  70. Qu WC, 2022, STEM CELL TRANSL MED, V11, P688, DOI 10.1093/stcltm/szac032
  71. Wu CM, 2020, JAMA INTERN MED, V180, P934, DOI 10.1001/jamainternmed.2020.0994
  72. Qu WC, 2020, STEM CELL TRANSL MED, V9, P1007, DOI 10.1002/sctm.20-0146
  73. R Development Core Team, 2021, R LANG ENV STAT COMP, DOI 10.1038/sj.hdy.6800737
  74. Rada G, 2020, MEDWAVE, V20, DOI 10.5867/medwave.2020.11.8078
  75. Sadeghi B, 2021, J CELL MOL MED, V25, P10554, DOI 10.1111/jcmm.16986
  76. Sahu KK, 2021, LAB MED, V52, P24, DOI 10.1093/labmed/lmaa049
  77. Saleh M, 2021, STEM CELL RES THER, V12, DOI 10.1186/s13287-021-02483-7
  78. Sanchez-Guijo F, 2020, ECLINICALMEDICINE, V25, DOI 10.1016/j.eclinm.2020.100454
  79. Sharma A, 2022, AM J STEM CELLS, V11, P37
  80. Shetty R, 2021, CYTOTHERAPY, V23, P471, DOI 10.1016/j.jcyt.2020.11.001
  81. Babel N, 2022, NAT REV NEPHROL, V18, P708, DOI 10.1038/s41581-022-00617-5
  82. Wu Z, 2017, TRANSPL P, V49, P1656, DOI 10.1016/j.transproceed.2017.03.078
  83. Shi L, 2021, SIGNAL TRANSDUCT TAR, V6, DOI 10.1038/s41392-021-00488-5
  84. Shu L, 2020, STEM CELL RES THER, V11, DOI 10.1186/s13287-020-01875-5
  85. Singh S, 2020, BASIC RES CARDIOL, V115, DOI 10.1007/s00395-020-0795-1
  86. Spyropoulos AC, 2020, LANCET, V395, pE75, DOI 10.1016/S0140-6736(20)30926-0
  87. Stumpf J, 2021, LANCET REG HEALTH-EU, V9, DOI 10.1016/j.lanepe.2021.100178
  88. Sweeting MJ, 2004, STAT MED, V23, P1351, DOI 10.1002/sim.1761
  89. Taghizadeh RR, 2018, CELL TRANSPLANT, V27, P181, DOI 10.1177/0963689717744787
  90. Tang N, 2020, J THROMB HAEMOST, V18, P844, DOI [10.1111/jth.14768, 10.1111/jth.14820]
  91. Taufiq H, 2023, THER ADV RESPIR DIS, V17, DOI 10.1177/17534666231158276
  92. Teryek M, 2022, CURR STEM CELL REP, V8, P61, DOI 10.1007/s40778-022-00208-x
  93. Xu XW, 2021, CLIN TRANSL MED, V11, DOI 10.1002/ctm2.297
  94. Baksh D, 2007, STEM CELLS, V25, P1384, DOI 10.1634/stemcells.2006-0709
  95. Thorlund K, 2020, LANCET DIGIT HEALTH, V2, pE286, DOI 10.1016/S2589-7500(20)30086-8
  96. Ventura-Carmenate Yendry, 2021, Transl Med Commun, V6, P25, DOI 10.1186/s41231-021-00101-5
  97. Verter F., 2021, STEM CELLS TRANS MED, V10, P9, DOI [10.1002/sct3.13002, DOI 10.1002/SCT3.13002]
  98. Verter F., ROLE MSC TREAT COR 1
  99. Verter F., 2020, STEM CELLS TRANS MED, V9, P15, DOI [10.1002/sctm.12818, DOI 10.1002/SCTM.12818]
  100. Wang T, 2020, LANCET HAEMATOL, V7, pE362, DOI 10.1016/S2352-3026(20)30109-5
  101. Wegmeyer H, 2013, STEM CELLS DEV, V22, P2606, DOI 10.1089/scd.2013.0016
  102. Weiss ARR, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01191
  103. Weiss DJ, 2022, CYTOTHERAPY, V24, P1071, DOI 10.1016/j.jcyt.2022.07.010
  104. Caplan H, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01645
  105. Weiss DJ, 2019, FRONT IMMUNOL, V10, DOI 10.3389/fimmu.2019.01228
  106. Balduzzi S, 2019, EVID-BASED MENT HEAL, V22, P153, DOI 10.1136/ebmental-2019-300117
  107. WHO, TRACK SARS COV 2 VAR
  108. Wickham H., 2016, GGPLOT2 ELEGANT GRAP, DOI 10.1007/978-3-319-24277-4
  109. Wiese DM, 2022, FRONT CELL DEV BIOL, V10, DOI 10.3389/fcell.2022.867426
  110. Wilson AJ, 2021, STEM CELL RES THER, V12, DOI 10.1186/s13287-021-02435-1
  111. Wölfel R, 2020, NATURE, V581, P465, DOI 10.1038/s41586-020-2196-x
  112. World Health Organization, REP WHO CHIN JOINT M
  113. worldometers, COVID WORLD
  114. Yilmaz R., 2022, ANESTH CRIT CARE, V4, P149, DOI [10.26502/acc.050, DOI 10.26502/ACC.050]
  115. Yin JQ, 2019, NAT BIOMED ENG, V3, P90, DOI 10.1038/s41551-018-0325-8
  116. Yoo KH, 2009, CELL IMMUNOL, V259, P150, DOI 10.1016/j.cellimm.2009.06.010
  117. Zaki MM, 2021, SCI ADV, V7, DOI 10.1126/sciadv.abg5995
  118. Zhang MH, 2022, GLOB HEALTH RES POL, V7, DOI 10.1186/s41256-022-00251-5
  119. Zhang Y, 2020, NEW ENGL J MED, V382, DOI 10.1056/NEJMc2007575
  120. Jung JW, 2013, YONSEI MED J, V54, P1293, DOI 10.3349/ymj.2013.54.5.1293
  121. Zhou F, 2020, LANCET, V395, P1054, DOI 10.1016/S0140-6736(20)30566-3
  122. Zhu RJ, 2021, CELL RES, V31, P1244, DOI 10.1038/s41422-021-00573-y
  123. Zumla A, 2020, INT J INFECT DIS, V96, P431, DOI 10.1016/j.ijid.2020.05.040
  124. Carabelli AM, 2023, NAT REV MICROBIOL, V21, P162, DOI 10.1038/s41579-022-00841-7
  125. Castro-Manrreza ME, 2014, STEM CELLS DEV, V23, P1217, DOI 10.1089/scd.2013.0363
  126. Center for Science in the Public Interest, 2020, COVID 19 EV HUB
  127. Chen MY, 2009, EXP HEMATOL, V37, P629, DOI 10.1016/j.exphem.2009.02.003
  128. Choudhery MS, 2020, CELL BIOL INT, V44, P2182, DOI 10.1002/cbin.11440
  129. Connors JM, 2020, BLOOD, V135, P2033, DOI 10.1182/blood.2020006000
  130. Cottle C, 2022, CURR STEM CELL REP, V8, P72, DOI 10.1007/s40778-022-00212-1
  131. Farkhad NK, 2022, STEM CELL RES THER, V13, DOI 10.1186/s13287-022-02920-1
  132. Couto PS, 2020, BIOTECHNOL ADV, V45, DOI 10.1016/j.biotechadv.2020.107636
  133. Couto PS, 2019, REGEN MED, V14, P309, DOI 10.2217/rme-2018-0171
  134. Couto PS, 2017, REGEN MED, V12, P953, DOI 10.2217/rme-2017-0066
  135. COVID-19 Dashboard, 2022, CTR SYST SCI ENG CSS
  136. Dabrowski FA, 2017, J OBSTET GYNAECOL RE, V43, P1758, DOI 10.1111/jog.13432
  137. Davis HE, 2023, NAT REV MICROBIOL, V21, P133, DOI 10.1038/s41579-022-00846-2
  138. Deckmyn Alex, 2018, CRAN
  139. Dilogo IH, 2021, STEM CELL TRANSL MED, V10, P1279, DOI 10.1002/sctm.21-0046
  140. Dominici M, 2006, CYTOTHERAPY, V8, P315, DOI 10.1080/14653240600855905
  141. Dyer O, 2023, BMJ-BRIT MED J, V380, DOI 10.1136/bmj.p2
  142. Karyana M, 2022, STEM CELL RES THER, V13, DOI 10.1186/s13287-022-02812-4
  143. European Centre for Disease Prevention and Control (ECDC), 2022, SPREAD SARS COV 2 OM
  144. FDA FDA Guidance Document, 2020, REG CONS HUM CELLS T
  145. Feng Y, 2020, CELL PROLIFERAT, V53, DOI 10.1111/cpr.12947
  146. Fung M, 2017, STEM CELL REP, V8, P1190, DOI 10.1016/j.stemcr.2017.03.013
  147. Gattinoni L, 2021, CRIT CARE, V25, DOI 10.1186/s13054-021-03748-6
  148. Giri J, 2022, CURR STEM CELL REP, V8, P1, DOI 10.1007/s40778-022-00207-y
  149. Golchin A, 2021, STEM CELL REV REP, V17, P56, DOI 10.1007/s12015-020-10046-1