One-year surveillance of SARS-CoV-2 in wastewater from vulnerable urban communities in metropolitan Sao Paulo, Brazil

Carregando...
Imagem de Miniatura
Citações na Scopus
13
Tipo de produção
article
Data de publicação
2022
Título da Revista
ISSN da Revista
Título do Volume
Editora
IWA PUBLISHING
Autores
BARBOSA, Mikaela Renata Funada
GARCIA, Suzi Cristina
BRUNI, Antonio de Castro
MACHADO, Flavio Silva
OLIVEIRA, Roberto Xavier de
DROPA, Milena
LEAL, Elcio
BRANDAO, Carlos Jesus
SILVA, Renan Lourenco Oliveira da
Citação
JOURNAL OF WATER AND HEALTH, v.20, n.2, p.471-490, 2022
Projetos de Pesquisa
Unidades Organizacionais
Fascículo
Resumo
The current COVID-19 pandemic has emphasized the vulnerability of communities living in the urban outskirts and informal settlements. The lack of reliable COVID-19 case data highlights the importance and application of wastewater-based epidemiology. This study aimed to monitor the COVID-19 trends in four vulnerable urban communities (slums and low-income neighborhoods) in metropolitan SAo Paulo by assessing the SARS-CoV-2 RNA viral load in wastewater. We analyzed 160 samples from May 2020 to June 2021 with weekly or fortnightly samplings. The samples were ultracentrifuged with glycine elution and quantified by N1/N2 SARS-CoV-2 RT-qPCR. The results of positivity were 100% (Paraisopolis, Heliopolis and Cidade Tiradentes) and 76.9% (Vila Brasilandia). The new case numbers of COVID-19, counted from the onset of symptoms, positively correlated with SARS-CoV-2 N1 viral loads from the two largest communities (p<0.001). SARS-CoV-2 infectivity was tested in Vero E6 cells after concentration with the two techniques, ultrafiltration (Centricon((R)) Plus-70 10 kDa) and sucrose cushion ultracentrifugation, but none of the evaluated samples presented positive results. Next-generation sequencing (NGS) analysis from samples collected in March and August 2021 revealed the presence of the clade 20 J (lineage P.1) belonging to the most prevalent circulating variant in the country. Our results showed that wastewater surveillance data can be used as complementary indicators to monitor the dynamics and temporal trends of COVID-19. The infectivity test results strengthened the evidence of low risk of infection associated with SARS-CoV-2 in wastewater.
Palavras-chave
environmental surveillance, infectivity, SARS-CoV-2, sequencing, vulnerable communities, wastewater
Referências
  1. Abbink P, 2007, J VIROL, V81, P4654, DOI 10.1128/JVI.02696-06
  2. Ahmed W, 2021, SCI TOTAL ENVIRON, V761, DOI 10.1016/j.scitotenv.2020.144216
  3. Alessandrini F, 2020, GENES-BASEL, V11, DOI 10.3390/genes11080929
  4. ANA Ag?ncia Nacional de Aguas, 2021, REP AG WAT SAN ANA
  5. [Anonymous], 2021, CRS REPORT 2021 GLOB
  6. [Anonymous], 2017, STANDARD METHODS EXA, DOI [10.2105/SMWW.2882.030, DOI 10.2105/SMWW.2882.030]
  7. Castro-Hermida JA, 2008, WATER RES, V42, P3528, DOI 10.1016/j.watres.2008.05.001
  8. Araujo DB, 2020, MEM I OSWALDO CRUZ, V115, DOI 10.1590/0074-02760200342
  9. Asghar H, 2014, J INFECT DIS, V210, pS294, DOI 10.1093/infdis/jiu384
  10. BAUER DF, 1972, J AM STAT ASSOC, V67, P687, DOI 10.2307/2284469
  11. Bertrand I, 2021, INT J HYG ENVIR HEAL, V233, DOI 10.1016/j.ijheh.2021.113692
  12. Bivins A, 2020, ENVIRON SCI TECH LET, V7, P937, DOI 10.1021/acs.estlett.0c00730
  13. Boogaerts T, 2021, SCI TOTAL ENVIRON, V789, DOI 10.1016/j.scitotenv.2021.148043
  14. CDC, 2022, PREGN MORT SURV SYST
  15. CDC, 2020, US CDC RT PCR PAN DE, P1
  16. Corman VM, 2020, EUROSURVEILLANCE, V25, P23, DOI 10.2807/1560-7917.ES.2020.25.3.2000045
  17. Crits-Christoph A, 2021, MBIO, V12, DOI 10.1128/mBio.02703-20
  18. de Oliveira LC, 2021, WATER RES, V195, DOI 10.1016/j.watres.2021.117002
  19. de Souza WM, 2020, NAT HUM BEHAV, V4, P856, DOI 10.1038/s41562-020-0928-4
  20. Decaro N, 2008, J VIROL METHODS, V151, P167, DOI 10.1016/j.jviromet.2008.05.016
  21. DUNN OJ, 1961, J AM STAT ASSOC, V56, P52, DOI 10.2307/2282330
  22. Feng S., 2021, EVALUATION SAMPLING, DOI [10.1101/2021.02.17.21251867, DOI 10.1101/2021.02.17.21251867]
  23. Figueiredo, 2021, RISCO J ARCHITETURE, V19, P1, DOI [10.11606/1984-4506.risco.2021.159431, DOI 10.11606/1984-4506.RISCO.2021.159431]
  24. Fongaro G, 2022, FOOD ENVIRON VIROL, V14, P417, DOI 10.1007/s12560-021-09487-9
  25. Fongaro G, 2021, SCI TOTAL ENVIRON, V778, DOI 10.1016/j.scitotenv.2021.146198
  26. Fores E, 2021, SCI TOTAL ENVIRON, V768, DOI 10.1016/j.scitotenv.2020.144786
  27. Iglesias NG, 2021, REV PANAM SALUD PUBL, V45, DOI 10.26633/RPSP.2021.137
  28. Giacobbo A, 2021, SCI TOTAL ENVIRON, V774, DOI 10.1016/j.scitotenv.2021.145721
  29. GPEI, 2016, EXPL ENV SURV
  30. Tran HN, 2021, ENVIRON RES, V193, DOI 10.1016/j.envres.2020.110265
  31. Haramoto E, 2020, SCI TOTAL ENVIRON, V737, DOI 10.1016/j.scitotenv.2020.140405
  32. HAUGH LD, 1976, J AM STAT ASSOC, V71, P378, DOI 10.2307/2285318
  33. Hewett P, 2007, ANN OCCUP HYG, V51, P611, DOI 10.1093/annhyg/mem045
  34. Jahn K., 2021, MEDRXIV, V2021, DOI [10.1101/2021.01.08.21249379, DOI 10.1101/2021.01.08.21249379]
  35. Jensen SM, 2016, J VIROL METHODS, V235, P125, DOI 10.1016/j.jviromet.2016.05.017
  36. Kirby AE, 2021, MMWR-MORBID MORTAL W, V70, P1242, DOI 10.15585/mmwr.mm7036a2
  37. Kumar M, 2021, ENVIRON RES, V196, DOI 10.1016/j.envres.2021.110946
  38. Kupek E, 2021, TROP MED INT HEALTH, V26, P1019, DOI 10.1111/tmi.13628
  39. La Rosa G, 2020, WATER RES, V179, DOI 10.1016/j.watres.2020.115899
  40. Lamers MM, 2020, SCIENCE, V369, P50, DOI 10.1126/science.abc1669
  41. Claro ICM, 2021, WATER RES, V203, DOI 10.1016/j.watres.2021.117534
  42. Medema Gertjan, 2020, Current Opinion in Environmental Science & Health, V17, P49, DOI 10.1016/j.coesh.2020.09.006
  43. Medema G, 2020, ENVIRON SCI TECH LET, V7, P511, DOI 10.1021/acs.estlett.0c00357
  44. Ministerio da Saude, 2020, BRAS CONF PRIM CAS D
  45. Mota CR, 2021, WATER RES, V202, DOI 10.1016/j.watres.2021.117388
  46. NICD (National Institute for Communicable Diseases), 2021, COVID 19 WAST BAS EP
  47. Okonechnikov K, 2012, BIOINFORMATICS, V28, P1166, DOI 10.1093/bioinformatics/bts091
  48. Paul D, 2021, NPJ CLEAN WATER, V4, DOI 10.1038/s41545-020-00096-w
  49. Razzolini MTP, 2021, ENVIRON POLLUT, V290, DOI 10.1016/j.envpol.2021.118003
  50. Philo SE, 2021, SCI TOTAL ENVIRON, V760, DOI 10.1016/j.scitotenv.2020.144215
  51. Pina S, 1998, APPL ENVIRON MICROB, V64, P4485
  52. PMSP, 2020, COVID 19 REL SIT
  53. Polanco-Martinez JM, 2019, R J, V11, P170, DOI 10.32614/RJ-2019-035
  54. Prado T, 2021, WATER RES, V191, DOI 10.1016/j.watres.2021.116810
  55. Rijksoverheid (Government of the Netherlands), 2021, COR DASHB EARL IND V
  56. Rimoldi SG, 2020, SCI TOTAL ENVIRON, V744, DOI 10.1016/j.scitotenv.2020.140911
  57. Ruan QR, 2020, INTENS CARE MED, V46, P846, DOI 10.1007/s00134-020-05991-x
  58. Sala-Comorera L, 2021, WATER RES, V201, DOI 10.1016/j.watres.2021.117090
  59. Sherchan SP, 2020, SCI TOTAL ENVIRON, V743, DOI 10.1016/j.scitotenv.2020.140621
  60. Sims N, 2020, ENVIRON INT, V139, DOI 10.1016/j.envint.2020.105689
  61. Summer M.D., 1987, MANUAL METHODS BACUL
  62. Takeda T., 2021, ENV RESILIENCE TRANS
  63. Silva LVE, 2020, J MED INTERNET RES, V22, DOI 10.2196/21413
  64. Wade MJ, 2022, J HAZARD MATER, V424, DOI 10.1016/j.jhazmat.2021.127456
  65. Weidhaas J, 2021, SCI TOTAL ENVIRON, V775, DOI 10.1016/j.scitotenv.2021.145790
  66. Westhaus S, 2021, SCI TOTAL ENVIRON, V751, DOI 10.1016/j.scitotenv.2020.141750
  67. Wilder ML, 2021, WATER RES X, V11, DOI 10.1016/j.wroa.2021.100100
  68. World Health Organization, 2020, DIG TOOLS COVID 19 C
  69. Wu Fuqing, 2020, mSystems, V5, DOI 10.1128/mSystems.00614-20
  70. Xagoraraki I., 2020, WOMEN WATER QUALITY, P75, DOI [10.1007/978-3-030-17819-2_5, DOI 10.1007/978-3-030-17819-2_5]
  71. Ye YY, 2016, ENVIRON SCI TECHNOL, V50, P5077, DOI 10.1021/acs.est.6b00876