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A B S T R A C T

Plasmodium malariae and Plasmodium vivax are protozoan parasites that can cause malaria in humans. They are
genetically indistinguishable from, respectively, Plasmodium brasilianum and Plasmodium simium, i.e. parasites
infecting NewWorld non-human primates in South America. In the tropical rainforests of the Brazilian Atlantic coast,
it has long been hypothesized that P. brasilianum and P. simium in platyrrhine primates originated from P.malariae and
P. vivax in humans. A recent hypothesis proposed the inclusion of Plasmodium falciparum into the transmission dy-
namics between humans and non-human primates in the Brazilian Atlantic tropical rainforest. Herein, we assess the
occurrence of humanmalaria in simians and sylvatic anophelines usingfield-collected samples in the Capivari-Monos
Environmental Protection Area from 2015 to 2017.We first tested simian blood and anopheline samples. Two simian
(Aloutta) blood samples (18%, n¼ 11) showed Plasmodium cytb DNA sequences, one for P. vivax and another for P.
malariae. Froma total of 9,416anopheline females,we found17pools positive forPlasmodium specieswith a18SqPCR
assay. Only three showed P. cytb DNA sequence, one for P. vivax and the others for rodent malaria species (similar to
Plasmodium chabaudi and Plasmodium berghei). Based on these results, we tested 25 rodent liver samples for the
presence ofPlasmodiumand obtainedP. falciparumcytbDNAsequence in a rodent (Oligoryzomys sp.) liver. Thefindings
of this study indicate complex malaria transmission dynamics composed by parallel spillover-spillback of human
malaria parasites, i.e. P. malariae, P. vivax, and P. falciparum, in the Brazilian Atlantic forest.
1. Introduction

The five agents of human malaria are vector-borne protozoans of the
genus Plasmodium, four are considered primarily human parasites, and
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one is a zoonotic parasite. The bites of Anopheles mosquito species
transmit these malaria parasites to their vertebrate hosts, including pri-
mates. Plasmodium falciparum is responsible for most malaria deaths
globally, reaching> 400 thousand cases worldwide in 2019, especially in
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sub-Saharan Africa (WHO, 2020). In contrast, the mortality associated
with the other three species is significantly lower. Plasmodium vivax is the
second most important because of high morbidity and high prevalence in
endemic areas of Southeast Asia and Latin America (WHO, 2020). Plas-
modium ovale and the pantropical distributed P. malariae, only account
for a fraction of the clinical cases worldwide (Rutledge et al., 2017).
These four Plasmodium species differ in aspects of their biology, likely
because they evolved as human parasites from distinct phylogenetic
lineages that are still under investigation (Escalante & Pacheco, 2019).
The zoonotic malaria parasite, Plasmodium knowlesi, infects Macaca spp.
in Southeast Asia and belongs to a phylogenetic clade that also includes
P. vivax (Muehlenbein et al., 2015; Yusof et al., 2016; Yakob et al., 2018).
This parasite is one of the most important causes of human malaria in
Malaysia (Singh & Daneshvar, 2013). There is another causative species
of zoonotic malaria, Plasmodium cynomolgi, which infects macaques, and
has also been reported in humans (Grignard et al., 2019; Hartmeyer et al.,
2019), but this species seems to be less frequent. Adding to these multiple
parasites and the diversity of Anopheles species that can act as vectors
worldwide, it is evident that the emergence of human malaria involved
evolutionary processes and interspecies spillovers, which occurred in a
variety of ecological settings that allow for malaria transmission (Esca-
lante & Pacheco, 2019).

The African origin of P. falciparum has long been accepted (Garnham,
1966; Coatney, 1971; Escalante & Ayala, 1994). This parasite belongs to
the subgenus Laverania, the African ape Plasmodium clade (Krief et al.,
2010; Loy et al., 2017; Otto et al., 2018). The populations of P. falciparum
followed the increase in the size of the human population and its global
expansion out of Africa (Joy et al., 2003; Tanabe et al., 2010; Loy et al.,
2017; Otto et al., 2018; Rodrigues et al., 2018). Part of this process was
the colonization of the Americas, an event that likely occurred during the
transatlantic slave trade 1533–1851 (Rodrigues et al., 2018).

The introduction of P. falciparum in the Americas required adapting to
new-world Anopheles spp. (Molina-Cruz et al., 2016). These vector spe-
cies have distinct ecological and genetic characteristics as they shared
their most recent common ancestor with African vectors as long as 100
Mya ago (Foster et al., 2017). The main malarial vector in Brazil is
Anopheles (Nyssorhynchus) darlingi, an anopheline species responsible for
99% of the reported malaria cases annually in the Amazon basin (Sallum
et al., 2019). In the Atlantic tropical rainforest of Brazil, the local vector
Anopheles (Kertezsia) cruzii can transmit human malaria (Carlos et al.,
2019). However, this local vector has a broader host species preference
(Multini et al., 2020), ranging from humans to domestic and sylvatic
animals (Medeiros-Sousa et al., 2019). In addition, larvae of this species
develop in the bromeliad phytotelma in shaded or partially shaded plants
inside the forest (Marques et al., 2012).

Although currently under control, the Atlantic coast of Brazil saw past
epidemics of malaria caused by P. falciparum and P. vivax in the 1950s
until it was eliminated from urban areas (e.g. Rio de Janeiro) in the 1970s
(Ferreira & Castro, 2016). Imported cases, P. vivax or P. falciparum from
endemic malaria regions such as the Amazon, frequently occur in
extra-Amazonian sites where they can infect local vectors (de Pina-Costa
et al., 2014). When local vectors are infected, they can generate
autochthonous malaria cases, often associated with tourism or occasional
activities carried out inside the forest (de Alvarenga et al., 2016). The
alternative hypothesis for these autochthonous malaria cases is trans-
mission inside the forest, which means transmission from an infected
non-human primate (zoonotic malaria) (Brasil et al., 2017). Autochto-
nous P. vivax cases in humans can be caused by the genetically indis-
tinguishable form Plasmodium simium, circulating in non-human primates
(Brasil et al., 2017; de Alencar et al., 2018; Abreu et al., 2019). Likewise,
autochthonous P. malariae cases can also result from circulation and
transmission of Plasmodium brasilianum from simians to humans (Coat-
ney, 1971; Guimar~aes et al., 2012). Further support for the zoonotic
malaria hypothesis is the biting behavior of An. cruzii in the canopy
where non-human primates forage and on the ground level where
humans walk inside forest (Medeiros-Sousa et al., 2021). The origin of
2

zoonotic malaria caused by P. simium is a reverse zoonosis of the human
parasite, i.e. spillover of P. vivax from human population to non-human
primates during the colonization period in Brazil (de Oliveira et al.,
2021). Now, the simian lineage (P. simium) is there circulating in nature
and causing subpatent or patent infections in humans (Brasil et al.,
2017). The spillback of the simian lineage is recognized as zoonotic
malaria. Spillover-spillback mechanism could have hypothetically sup-
ported the persistence and adaptation of other invasive human malaria
parasites arriving in the Americas, such as P. falciparum.

Plasmodium falciparumDNA and immunological responses were found
in residents living in forested regions of S~ao Paulo and Rio de Janeiro,
suggesting its transmission among asymptomatic individuals (Maselli
et al., 2014; Sallum et al., 2014; Miguel et al., 2019). A study by Laporta
et al. (2015) investigated local foci of P. falciparum among local anoph-
elines. Accordingly, 4.4% (21/480) of anophelines were found infected
with P. falciparum, and most infected females (86%, 18/21) were An.
cruzii (see Laporta et al., 2015). Finally, there is evidence of P. falciparum
detected in Amazonian non-human primates in Brazil and Colombia
(Araújo et al., 2013; Rond�on et al., 2019).

The main working hypothesis tested here is that the most threatening
humanmalaria parasite (P. falciparum) has a transmission cycle involving
non-human primates in the Brazilian Atlantic Forest (Duarte et al., 2008;
Laporta et al., 2015; Laporta, 2017; Assis et al., 2021). We tested this
hypothesis using field-collected anopheline and simian blood samples in
an environmental protection area (Medeiros-Sousa et al., 2019). We also
tested these samples for the presence of other human malaria parasites
(P. vivax and P.malariae) (Demari-Silva et al., 2020). As a complementary
hypothesis, we tested for the presence of Plasmodium spp. in rodent liver
samples considering that rodents can act as reservoirs of malaria para-
sites. We discuss these results in light of the Plasmodium spp. resilience
post-elimination.

2. Materials and methods

2.1. Study area

The forest physiognomies of the Atlantic forest biome were reduced
over the last century to 11–16% of their original domain that covered the
entire South-to-North gradient of the Brazilian Atlantic coast (Ribeiro
et al., 2009). The most extensive conserved region with these forest
remnants is in the southeastern S~ao Paulo State (Fig. 1A). Field in-
vestigations were carried out in the Capivari-Monos EPA (Environmental
Protection Area) at ~800m above sea level (Fig. 1B) (Duarte et al., 2013;
Medeiros-Sousa et al., 2019). The climate in the region is classified as a
tropical monsoon climate (modified K€oppen AM-type classification) with
excessive annual precipitation (> 2,500mm) and dry, mild winters
(Rolim et al., 2007). Field collections were carried out in sites 1–4 where
few humans are present, non-human primates are abundant, and the
dominance of An. cruzii is documented (Duarte et al., 2013; Medeir-
os-Sousa et al., 2019) (Fig. 1C).

2.2. Study design

The study includes samples from three sources: (i) simian blood
samples; (ii) anopheline samples; and (iii) rodent liver samples. With the
first two sources, we tested for the presence of human malaria, and with
the latter, for the presence of any Plasmodium in the rodent liver. We
made prospective studies for collecting and testing simian blood samples
from July 2014 to June 2016 and anopheline samples from March 2015
to May 2017. After the outcomes of both studies, we made a retrospective
study with rodent liver samples (collected in 2012) from June 2017 to
September 2018 (Fig. 2).

Injured howler monkeys (Alouatta clamitans) by any cause (n¼ 11)
were received from the study area and during the study period (Fig. 2).
They were treated and sent back to nature by the municipal department
for forestry and wildlife (DEPAVE/PMSP). Blood samples of 5ml were



Fig. 1 Study area. A Atlantic tropical rainforest remnants. B Southeastern
Atlantic Forest. C Field collections were conducted in Capivari-Monos EPA
(�46.7, �23.9): 1, Embura village; 2, Marsilac village; 3, Transition zone; 4,
Cachoeira do Marsilac (Medeiros-Sousa et al., 2019). Abbreviation: SP, S~ao Paulo
metropolitan urban area with a population of ~20 million people. Source: SOS
Mata Atlântica/INPE, 2016
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collected in EDTA tubes for laboratory testing. The faunal survey con-
ducted by DEPAVE/PMSP in the study area in 2012 obtained liver tissue
samples from 25 rodent species. These samples were kept stored at
�80 �C before the laboratory testing (Fig. 2).

2.3. Field collections and sample DNA extraction

Anopheline sampling was performedmonthly during the study period
(Fig. 2). In each of the four study sites (Fig. 1C), we employed: (i)
Shannon traps from 18:00 h to 22:00 h (depending on the crepuscular
time); (ii) CDC light traps with CO2 (dry ice) from 18:00 h to 6:00 h at
ground level and in the canopy (10-m height); and (iii) backpack aspi-
rator sampling on vegetation that could represent shelters for adults (20-
min sampling).

Mosquito specimens were euthanized immediately before morpho-
logical identification using the keys of Forattini (2002). Non-engorged
anopheline females were stored individually in isopropanol until DNA
extraction. DNA was extracted in pools (a maximum of ten specimens/-
pool) using the Qiagen™ DNeasy Blood and Tissue kit (Qiagen, Hilden,
Germany) according to the manufacturerʼs protocol.
Fig. 2 Timeline of the activities carr
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Howler monkey blood samples collected as part of the DEPAVE/PMSP
2014 and 2016 surveys were stored in �20 �C (DEPAVE/PMSP, 2012).
Rodent liver tissue samples were obtained from the mammal census per-
formedbyDEPAVE/PMSP in the study area in 2012 (SVMA/PMSP, 2011).
DNA extraction from blood and liver samples followed the protocol pro-
vided by the Qiagen™ DNeasy Blood and Tissue kit.

2.4. Laboratory testing

Anophelines, simian blood samples and rodent liver samples were
tested for the presence of Plasmodium DNA using the TaqMan qPCR assay
(18S rRNA gene) following Bickersmith et al. (2015). Assays to detect
genus Plasmodium, P. vivax and P. falciparum were performed separately
using the TaqMan Universal Master Mix (Applied Biosystems, Foster City,
CA, USA). The same methodology (Bickersmith et al., 2015) was used to
detect P. malariae but with the primers and probes described by Rouge-
mont et al. (2004). DNA extracted from known positive P. falciparum
samples, P. brasilianum blood smear, and a patient blood with P. vivax
were used as positive controls. An aliquot of ultrapure water was used as
a negative control.

Positive samples for Plasmodium DNA using 18S qPCR were further
analyzed. A nested PCR assay amplifying a ~402 bp cytochrome b (cytb)
fragment was performed with the cytb-1 primers (Siregar et al., 2015)
followed by sequencing for molecular identification. PCR products were
purified with ExoSAP-IT PCR Product Cleanup (ThermoFisher Scientific,
Waltham, MA, USA) according to the manufacturerʼs instructions and
forwarded with the respective primers to a gene sequencing company
(Genomic Engenharia Molecular, S~ao Paulo, SP, Brazil). An alternative
protocol for amplifying a fragment of ~424 bp mitochondrial Plasmo-
dium small subunit rRNA (18S rRNA) gene, according to Siregar et al.
(2015) was also employed. To generate more sequence data for phylo-
genetic analysis, we re-tested 15 anopheline samples confirmed positive
for P. falciparum by Laporta et al. (2015) with the cytb nested PCR assay.
Plasmodium 18S and cytb sequences generated in this study were depos-
ited in the GenBank database under the accession numbers MF573323
(18S) and MF573300, MF573301, MT770753, MF476105, MT779799,
MT779800, and MT779801 (cytb).

Because morphological identification of rodents at the species level
was not possible, we applied the cytb protocol for species identification
(Smith & Patton, 1993).

2.5. Phylogenetic analysis

The sequences generated in this study were compared with databases
available using the BLAST tool (https://blast.ncbi.nlm.nih.gov) on Gen-
Bank (Altschul et al., 1997). A nucleotide alignment was generated using
ClustalX v2.0.12 and Muscle as implemented in SeaView v4.3.5 (Gouy
et al., 2010) withmanual editing. The alignment was constructed with 32
cytb partial sequences (331 bp excluding gaps) belonging to the genus
ied out during the investigation

https://blast.ncbi.nlm.nih.gov
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Plasmodium, including the newly generated sequences and sequences
available on GenBank (Benson et al., 2013) for Plasmodium spp. that
infect mammals (e.g. P. falciparum, P. vivax, P. simium, P. malariae, P.
knowlesi and Plasmodium berghei amongst others). Sequences of species
that infect birds, Plasmodium relictum and Plasmodium gallinaceum, were
included as the outgroup. Sequences that showed a similarity > 95%
using BLAST (Altschul et al., 1997) were included.

The phylogenetic tree was inferred based on this alignment using
the Bayesian method implemented in MrBayes v3.2.6 with the default
priors (Ronquist & Huelsenbeck, 2003). The general time reversible
model with gamma-distributed substitution rates and a proportion of
invariant sites (GTR þ Γ þ I) was estimated as the best-fit model of
nucleotide substitution based on the lowest Bayesian Information Cri-
terion (BIC) scores as estimated with MEGA v7.0.14 (Kumar et al.,
2016). Bayesian support was inferred for the nodes in MrBayes by
sampling every 1,000 generations from two independent chains lasting
2� 106 Markov Chain Monte Carlo (MCMC) steps. Chains were
assumed to have converged once the value of the potential scale
reduction factor (PSRF) was between 1.00 and 1.02 and the average SD
of the posterior probability was < 0.01 (Ronquist & Huelsenbeck,
2003). Then, 25% of the samples were discarded once convergence was
reached as “burn-in”. GenBank accession numbers for all sequences
used in the analysis are given in the phylogenetic tree.
Table 1
Testing of simian blood samples (Alouatta guariba clamitans) for Plasmodium spp.,
Capivari-Monos EPA, Brazilian Atlantic rainforest, 2014–2016

ID (DEPAVE) 18S Plasmodium cytb Plasmodium GenBank ID

10 (56067) P. vivax P. vivaxa MF573301
16 (63739) P. malariaea – MF573323
17 (64241) P. malariae – –

19 (65181) – nd nd
20 (65218) – nd nd
24 (62454) – nd nd
30 (68145) – nd nd
31 (68334) – nd nd
36 (70954) – nd nd
38 (73727) P. vivax – –

41 (75124) – nd nd

Note: P. vivax- and P. malariae-positive or negative (�) results for testing for
parasite species presence in the sample.
Abbreviation: ID(DEPAVE), Divis~ao T�ecnica de Medicina Veterin�aria e Manejo da
Fauna Silvestre, S~ao Paulo, SP, Brazil; nd, not done.

a Sequenced sample.

Table 2
Testing of anopheline samples for Plasmodium spp., Capivari-Monos EPA, Brazilian A

ID (pool) trap Site 18S Pl

84 (10 An. cruzii) Sh 4 (forest) P. viva
85 (10 An. cruzii) Sh –

87 (10 An. cruzii) Sh Plasmo
92 (10 An. cruzii) Sh P. viva
291 (10 An. cruzii) Sh P. viva
361 (10 An. cruzii) Sh P. viva
381 (10 An. cruzii) Sh P. mala
553 (10 An. cruzii) Sh P. mala
386 (10 An. cruzii) Sh 3 (transition zone) P. viva
598 (1 An. cruzii) CDCg P. mala
600 (1 An. cruzii) CDCg P. falci
621 (1 An. strodei) Sh P. viva
638 (1 An. strodei) Sh P. viva
678 (7 An. strodei) Sh Plasmo
599 (10 An. cruzii) Asp 2 (Marsilac village) P. falci
684 (5 An. cruzii) CDCc Plasmo
01 (1 An. evansae) CDCg 1 (anthropic area) P. viva
09 (1 An. cruzii) CDCc P. viva

Note: Plasmodium-positive or negative (�) results for testing for parasite species pres
Abbreviations: Sh, Shannon traps; CDCg, CDC trap on the ground; CDCc, CDC trap in t
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3. Results

3.1. Simian blood samples

Out of 11 simian blood samples tested, we obtained two (18%) P.
vivax-positive and two (18%) P. malariae-positive in 18S qPCR (Table 1).
From the positive samples, we obtained one 18S sequence of P. malariae
and one cytb sequence of P. vivax (Table 1).

3.2. Anopheline samples

A total of 9,416 anopheline females were collected; of these, 9,328
specimens were An. cruzii (> 99%), 82 An. strodei, 3 Anopheles (Anoph-
eles) pseudotibiamaculatus, 2 Anopheles (Nyssorhynchus) evansae, and 1
Anopheles (Nyssorhynchus) albitarsis. Seventeen pools returned Plasmo-
dium-positive 18S qPCR (Table 2). Three Plasmodium cytb sequences were
confirmed in An. cruzii (Table 2). The obtained P. vivax cytb sequence was
100% similar to the one found in howler-monkeys in the study region
(Table 1). The obtained P. berghei and Plasmodium chabaudi cytb se-
quences (Table 2) motivated testing of rodent liver samples.

Out of 15 anopheline samples from Laporta et al. (2015), we obtained
two P. falciparum cytb sequences, one in An. cruzii (GenBank: MT779800)
and another in Anopheles (Nyssorhynchus) strodei (GenBank: MT779801).

3.3. Rodent liver samples

One rodent species (Oligoryzomys cf. flavescens) was positive for P.
falciparum using 18S and cytb protocols out of 25 rodent specimens tested
(Supplementary Table S1).

3.4. Phylogenetic analyses

The phylogenetic relationships between the cytb sequences generated
in this study (n¼ 7) and those available on GenBank are illustrated in
Fig. 3. Sequences MF573300 (from An. cruzii) and MF573301 (from A.
clamitans) were placed in a clade containing sequences of P. vivax and
P. simium (Fig. 3). Sequences MT770753 and MF476105 obtained from
An. cruzii clustered in clades containing sequences of P. chabaudi and
P. berghei, respectively. Sequences MT779800 (from An. cruzii),
MT779801 (from An. strodei), and MT779799 (from O. flavescens) were
placed together in a clade containing sequences of P. falciparum (Fig. 3).
Although the alignment comprised only 331 bp, most of the nodes of
interest had high posterior probability values supporting the identifica-
tion of the parasites found in this study.
tlantic rainforest, 2015–2017

asmodium cytb Plasmodium GenBank ID

x – –

P. chabaudi MT770753
dium spp. P. berghei MF476105
x – –

x – –

x P. vivax MF573300
riae – –

riae – –

x – –

riae – –

parum – –

x þ P. falciparum – –

x þ P. malariae – –

dium spp. – –

parum – –

dium spp. – –

x – –

x – –

ence in the sample.
he canopy; Asp, backpack aspirator.



Fig. 3 A Bayesian phylogenetic hypothesis of Plasmodium spp. parasites infecting mammals and mosquitoes from the Capivari-Monos EPA, Brazil. We constructed a
phylogenetic tree based on partial sequences of the cytb gene (31 sequences; 331 bp excluding gaps). Posterior probability values are shown above or below the
branches. Plasmodium relictum and Plasmodium gallinaceum were used as the outgroup. In addition to parasite and host names, lineage identification (if available) and
GenBank accession numbers are provided in parentheses for all sequences used in the analysis. Sequences colored in red and blue show similarities with human
malaria parasites, P. vivax and P. falciparum, respectively. Sequences colored in green represent rodent malaria parasites, similar to P. berghei and P. chabaudi. The
reference sequences in the clades containing colored sequences are highlighted in bold
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4. Discussion

Our results indicate that P. vivax, P. malariae and P. falciparum are
transmitted among non-human primates, primarily by An. cruzii, in the
Atlantic tropical rainforest of Brazil. In particular, consistent with other
studies, we found P. vivax and P. malariae in anopheline vector species
and non-human primates (Duarte et al, 2008, 2013; Abreu et al., 2019).
However, the presence of P. falciparum in An. cruzii in the sylvatic
transmission cycle remains puzzling.

Our previous findings of the presence of P. falciparum in a sylvatic
transmission cycle detected in An. cruzii and An. strodei (see Laporta et al.,
2015) add to the current finding of P. falciparum in a rodent liver (Fig. 3).
The presence of P. falciparum DNA in a rodent liver sample may represent
an unsuccessful infection stopped at the liver stage because rodents are
likely dead-end hosts for humanmalaria pathogens (Laporta et al., 2013).
Although P. falciparum is considered eliminated from the Atlantic Forest,
there seems to be transmission undetected by the traditional
vector-borne disease surveillance methods. The lack of detection can be
5

explained by low prevalence and focal circulation in a “post-elimination”
phase. Subpatent or undetectable malaria transmission appears to be
common in South America, e.g. Molina G�omez et al. (2017); Manrique
et al. (2019). Exploring the possibility that P. falciparum remains unde-
tected in these areas of Brazil is a matter that requires active surveillance
and further investigations.

We can speculate that P. falciparum-infected (likely asymptomatic)
humans could infect local vectors. Consistent with this scenario, a recent
cross-sectional study carried out on humans living on the border of the
Atlantic tropical rainforest region of Rio de Janeiro identified P. falcip-
arum (0.3%), P. vivax (0.6%) and P. malariae (1.9%) in humans with
malaria (Miguel et al., 2019). These authors also reported positive
serological testing for P. falciparum (3.5%), P. vivax (7.7%) and P.
malariae (30.9%). All thick blood smears were negative, indicating that
the individuals had submicroscopic, asymptomatic infections. Overall,
people who entered the forest were more likely to exhibit reactive
serology (Miguel et al., 2019). These data corroborate evidence found in
Espírito Santo and S~ao Paulo states (Curado et al., 2006; Duarte et al.,
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2006; Cerutti et al., 2007). Thus, our findings are consistent with a sce-
nario where infected asymptomatic individuals may be entering the
forest environment frequently. However, it is difficult to detect these
infectious individuals without carrying out a longitudinal study.

Alternatively, our findings are also consistent with non-human pri-
mates being competent hosts for P. falciparum (see Duarte et al., 2008;
Monteiro et al., 2020). Plasmodium falciparum DNA was detected in two
fecal samples of red howler monkeys (Alouatta seniculus) from Colombia
(Rond�on et al., 2019) and oneAlouatta guariba clamitans from the Atlantic
tropical rainforest (Duarte et al., 2008). Still, testing this hypothesis is
logistically complicated even when using fecal samples (Rond�on et al.,
2019) because of the likely low prevalence of P. falciparum parasites in
non-human primates (Duarte et al., 2008), if any. Although explaining
negative results is particularly difficult, a case could be made that the
complexities of detecting parasites with low frequency may explain why
other studies have failed to detect P. falciparum in Brazilian non-human
primates (Abreu et al., 2019). Altogether, the available data indicate a
continuous forest cycle involving P. falciparum-infected zoophilic
mosquitoes and that such event occurs with low frequency. Whether it
results from asymptomatic human patients or non-human primates
cannot be determined in this study. Nevertheless, a small fraction of the
mosquito population is responsible for this residual transmission, chal-
lenging investigations. Longitudinal, long-term studies will be necessary
to uncover the mechanisms that can maintain this putative silenced
transmission. Whatever scenario is sustaining transmission, a
P. falciparum malaria case at the forest border does not fit the case defi-
nition of imported malaria based on travel history (de Pina-Costa et al.,
2014; Lorenz et al., 2015).

Our results increase the body of evidence supporting that humans
introduced malarial parasites to the native non-human primate species
that are now maintaining a forest transmission cycle in the Brazilian
Atlantic Forest. Transference of human parasites to animals has been
reported for other parasitic diseases (e.g. Cryptosporidium hominis, P. ovale
wallikeri, strongylid nematodes) (Estrada-Pe~na et al., 2014; Hasegawa
et al., 2014; Mapua et al., 2018; Paf�co et al., 2019). Reverse zoonosis of
human P. vivax into simian P. simium in the past Brazilian colonization
(de Oliveira et al., 2021) is the result of spillover of the human parasite to
NewWorld monkeys from European or African people who arrived at the
Americas during the colonization period. The spillback of the simian
lineage (P. simium) is recognized as zoonotic malaria (Brasil et al., 2017),
an alternative hypothesis for malaria infections in the Atlantic Forest
opposite to the classical case definition based on imported malaria vec-
torized by the local vector. Likewise, human P. malariae may have been
affected by the same process in South America. Further supporting evi-
dence of a complex human-non-human primate cycle is a higher genetic
diversity found in the Brazilian Amazon and Atlantic Forest populations
of P. brasilianum vs P.malariae (Guimar~aes et al., 2012; Lalremruata et al.,
2015). This pattern suggests that the P. brasilianum populations could be
the source of at least part of the P. malariae cases. It is worth noting that
P. malariae has a broader distribution than P. vivax. Indeed, P. malariae
has been detected in approximately 31 species of New World monkeys
(de Alvarenga et al., 2017; Erkenswick et al., 2017; Rond�on et al., 2019)
from Costa Rica to Brazil. This broad host and geographic ranges are
unique among primate malaria parasites. Reverse zoonosis of P. malariae
in South America may have occurred before the colonization period
because spillback of the simian lineage (P. brasilianum) has been
considered to explain zoonotic malaria by P. malariae in humans across
the continent and not only in the Atlantic Forest (Rond�on et al., 2019).

In the case of the parasites similar to African rodent malaria agents (P.
chabaudi and P. berghei) obtained from the An. cruzii pools, we can only
speculate that this could be an unknown rodent parasite in South
America whose relationship with the African species needs to be
explored. Interestingly, we observed 18% of blood meals being taken
from rodents by An. cruzii (68 samples with rodent DNA/373 engorged
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females) in the study area (Evangelista et al., unpublished observations).
Evidence of a rodent-specific Plasmodium species has been previously
found, i.e. Plasmodium spp. in capybaras (dos Santos et al., 2009). More
data are needed to understand what these rodent parasites are.

Another layer of complexity in malaria dynamics is the anopheline
vector composition in the Atlantic Forest. Although An. cruzii is the
dominant vector, we observed An. strodei and An. evansae, together with
An. cruzii, infected with humanmalaria on the forest edges. This diversity
in the vector composition was previously observed (Duarte et al., 2013;
Laporta et al., 2015). While An. cruzii is sylvatic, the other vectors can
survive man-made changes in the natural ecosystem and proliferate in an
anthropic environment (Forattini & Massad, 1998). The role of local
vectors as “bridge vectors” of malaria parasites in the human environ-
ment cannot be neglected.

Overall, malaria transmission dynamics in the Brazilian Atlantic
rainforest is consistent with a mosaic of cycles involving human malaria
parasites being transmitted among local non-human primates. Such dy-
namics is maintained by vectors feeding upon a broad range of vertebrate
hosts, in this case, the dominant vector An. cruzii combined with local
vectors. Thus, the vector host range seems crucial to explain the proposed
spillover-spillback process.

5. Conclusions

We tested the hypothesis of the transmission cycle of human malaria
parasites (P. vivax, P. malariae and P. falciparum) involving non-human
primates and anophelines in the Brazilian Atlantic Forest. Although the
role of long-lasting asymptomatic infections in humans cannot be ruled
out, particularly in the case of the P. falciparum infections, these results
yield additional evidence indicating that non-human primates could act as
reservoirs for human malaria. The evidence is clearer for P. vivax and
P. malariae. These parasites have been found in both non-human primates
and the dominant vector (An. cruzii). Furthermore, outbreaks that have
been reported (Brasil et al., 2017) are more likely the result of spillback.
Assessing whether spillbacks constitute significant risk for the reintro-
duction of malaria into the human population, particularly in urban areas,
is a matter that requires longitudinal studies and scaling up molecular
surveillance on the forest edges, the human-non-human primate interface.
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